抽象的生物药物蛋白通常是通过培养重组中国仓鼠卵巢(CHO)细胞而产生的。高生产者细胞系从转染的细胞中筛选,并随机整合靶基因。由于转基因表达易受综合基因组基因座的周围环境的影响,因此应从大量具有异质转基因插入的重组细胞中选择生产者细胞系。相比之下,靶向集成在特征的基因组基因座中可以预测的转基因表达和较少的克隆变异性,因此可以预期稳定的靶蛋白产生。基于基于可编程核酸酶的基因组编辑技术最近已成为细胞基因组中靶基因座精确编辑的多功能工具。在这里,我们使用CRISPR/CAS9和CRISPR介导的精确整合到靶染色体(PIST)系统中,证明了将转基因的靶向敲入转基因的CHO细胞中的低黄嘌呤磷酸糖基转移酶(HPRT)基因座。我们还基于与同源性的靶向集成(HITI)系统生成了敲入CHO细胞。我们使用这些系统评估了转基因在HPRT基因座中的敲门效率。
摘要:基于细胞的自身免疫性疾病的疗法已获得了显着的吸引力,其中几种方法以调节性T(T Reg)细胞为中心,一个众所周知的免疫抑制细胞,其特征在于其转录因子Foxp3的表达。不幸的是,由于循环中可用的T Reg细胞数量少,收获和培养T Reg细胞仍然是一个挑战。据报道,CD4 + T细胞中的工程FOXP3表达可以导致T型表型。但是,当前方法导致这些细胞的工程效率低下。在这里,我们开发了一个可离子的脂质纳米颗粒(LNP)平台,以有效地将FOXP3 mRNA传递到CD4 + T细胞。我们成功地将CD4 + T细胞设计到Foxp3-T(FP3T)细胞中,该细胞瞬时表现出免疫抑制表型并在功能上抑制效应T细胞的增殖。这些结果证明了LNP平台可以在自身免疫疗法中使用潜在应用的工程免疫抑制T细胞。关键字:脂质纳米颗粒,mRNA输送,T细胞工程,FOXP3,自身免疫性疾病
抽象的大麻滥用是青少年中的常见现象。大麻中的主要精神活性物质是四氢大麻酚(THC)。但是,在过去的40年中,在大多数制剂中,精神活性成分THC的含量不是恒定的,而是由于其他繁殖和培养条件而增加的。Thc充当CB1和CB2受体的内源性大麻素,但可以描述为偏痕为部分(不是纯)Ago-NETIST。最近的证据表明,通过THC激活CB1可以减少神经元中神经元生长因子的产生,并影响突触形成的其他信号传导级联反应。由于这些因素在大脑发育和青春期的神经元转化过程中起重要作用,因此THC可以以另一种方式影响青少年大脑以外的人大脑以外的方式合理。因此,在某些大脑区域的灰色含量损失时,观察到了青春期大麻中的结构变化。此外,最近的研究表明,THC对青少年和成人大脑以及
• 使用 SLEEK ™ 方法,用工程化的 AsCas12a 编辑 iPSC,敲入 CD16 和 mbIL-15。3 同时,还用 AsCas12a 编辑 iPSC,敲除 CISH 和 TGFβR2。然后将 iPSC 克隆分化为 iNK 细胞。流式细胞术证明 DKI iNK 细胞表面表达 CD16 和 mbIL-15。• 使用 Incucyte ® 成像 NucLight Red 标记的 SK-OV-3 细胞进行 3D 肿瘤球体杀伤试验,以评估 iNK 细胞的细胞毒性。通过在基础培养基中培养野生型 (WT) 和 DKI iNK 细胞 21 天(不含支持细胞因子)来测量体外持久性。 • 非肥胖糖尿病 (NOD) 严重联合免疫缺陷 (scid) γ (NSG) 小鼠接种 0.25x 10 6 荧光素酶 (luc) 表达 SKOV-3 细胞系 (SKOV-3-luc) 卵巢肿瘤细胞。小鼠接受单次腹膜内 (IP) 剂量 500 万 WT iNK 或 EDIT-202 细胞,多次 IP 剂量 2.5 mg/kg 曲妥珠单抗 (TRA)。使用 Perkin Elmer 生物发光体内成像系统 (IVIS) 计算肿瘤负荷。披露
硅藻等复杂微观且具有工业重要性的微藻群体的好处并不为人所知,最近它们的工业潜力让科学界大吃一惊。硅藻具有在恶劣条件下生存的能力,并且具有不同的孔隙结构和明确的细胞壁,使其成为生产各种工业产品的理想细胞机器。随着显微镜、宏条形码、分析和遗传工具的进步,硅藻细胞在工业应用中的前景也显著增加。此外,众所周知,工业和学术界对遗传工具的使用方式发生了重大变化,从而对硅藻的各种分子成分进行了明确的表征。可以以经济高效的方式进行硅藻培养的初级培养、收获和进一步的下游加工。硅藻具备成为制药、纳米技术和能源替代原料的所有品质,从而实现可持续经济。本综述试图收集硅藻在生物技术、生物医学、纳米技术和环境技术等不同工业应用方面的重要进展。
背景 20 多年前,人类基因组计划产生了第一个组装的人类基因组 [1,2]。基因组测序工作揭示了与疾病相关的基因和遗传变异,但大部分并未揭示基因功能。因此,功能基因组学工作对于确定已鉴定的约 20,000 个人类蛋白质编码基因的功能至关重要。在过去十年中,基于 CRISPR(成簇的规律间隔的短回文重复序列)的筛选增加了全基因组遗传筛选的便利性,使研究人员能够发现生物途径的新成分、确定现有药物的机制、确定新的治疗靶点并揭示协同遗传关系 [3-7]。然而,由于全基因组向导文库的规模(20,000–200,000 + 个元素)和典型的细胞覆盖率(500–1000 倍)需要准确量化基因命中并平均整个群体中与表型无关的变异,每次筛选需要每个样本数千万到数亿个细胞 [ 8 – 12 ]。这一要求对需要大规模培养的细胞模型提出了后勤挑战
摘要枯草杆菌长期以来一直是基础研究的重要主题。然而,由于其易于遗传操作,大规模费用的培养特征,蛋白质分泌的较高能力,并且通常被认为是安全的(GRAS)状态,因此该生物也具有工业应用。此外,作为枯草芽孢杆菌的代谢休眠形式,由于它们对许多环境压力的极大抵抗,其孢子引起了极大的兴趣,这使得孢子成为各种应用的新型平台。在这种情况下,我们总结了枯草芽孢杆菌孢子的常规和新兴应用,重点是它们独特的特征如何导致许多技术领域的创新性,包括生成稳定和可回收酶,合成生物学,药物,药物和材料科学。最终,这种重新观察希望激发科学界利用孢子来利用跨学科的学科来解决全球对粮食短缺,环境保护和医疗保健的关注。
慢性粒细胞白血病 (CML) 的靶向疗法有效,但很少能治愈。患者通常需要无限期治疗,这为药物耐药性的产生提供了充足的时间。耐药性问题是 CML 导致死亡的主要原因之一,因此任何预防耐药性的方法都很重要。药物轮换,即定期在不同药物之间切换治疗,就是这样一种选择,理论上可以延缓耐药性的发生。药物轮换疗法的体外测试是将其应用于动物或人体试验的第一步。我们开发了一种在 CML 细胞系中测试药物轮换方案的方法,该方法基于用适量的抑制剂培养细胞,中间穿插清洗程序和药物交换。在 CML 特异性细胞系 KCL-22 中评估了伊马替尼和普纳替尼的药物轮换。药物轮换最初减少了 KCL-22 细胞的生长,但细胞最终适应了该方案。我们的结果表明,在药物轮换中,普纳替尼会暂时使细胞对伊马替尼敏感,但这种效果是短暂的,经过几个治疗周期后最终会消失。本文讨论了这一观察结果的可能解释。
高级体外模型概括了人心脏的结构组织和功能,这对于准确的疾病建模,更可预测的药物筛查和安全药理学非常需要。传统的3D工程心脏组织(EHT)在流量下缺乏异型细胞的复杂性和培养,而通常缺乏3D构造和准确的收缩读数,微型流体的心脏内片(HOC)模型缺乏。在这项研究中,通过培养人类多能干细胞(HPSC)衍生的心肌细胞(CMS),内皮(ECS)和平滑肌细胞(SMC),与人类心脏小胸针(MICBRONIAID-FORMIATS-INTER-MICTRORORY FOR-ORRORORIATH)一起培养,开发了一种创新和用户友好的HOC模型来克服这些局限性。 (μEHTS)具有CM-EC界面,让人联想到生理毛细管衬里。在流量下培养的μEHT显示出增强的收缩性能和传导速度。 此外,EC层的存在改变了μEHT收缩中的药物反应。 该观察结果表明EC具有潜在的类似屏障的功能,这可能会影响药物对CMS的可用性。 这些具有增加生理复杂性的心脏模型,将为筛选治疗靶标的铺平道路并预测药物效应。μEHT显示出增强的收缩性能和传导速度。此外,EC层的存在改变了μEHT收缩中的药物反应。该观察结果表明EC具有潜在的类似屏障的功能,这可能会影响药物对CMS的可用性。这些具有增加生理复杂性的心脏模型,将为筛选治疗靶标的铺平道路并预测药物效应。
替代学术资格BTEC国家科学学历是2025年9月的教学新事物。旨在补充研究水平的研究计划,这些新资格旨在旨在进入高等教育的学生,以此作为通往未来就业的途径。本课程相当于1 A级。理论主题涵盖了人类解剖学,生理,健康,疾病和疗法的各个方面。请注意,学生无法与生物学A级别一起研究此AAQ。学生学习4个单元,其中2个单位是外部评估的(价值58%)。1。人类生理学,解剖学和病理学原理•生物分子•细胞,运输和组织•神经和内分泌系统•肌肉骨骼系统•心血管和呼吸系统肾脏和消化系统2.健康问题和科学报告•诊断技术•免疫反应•免疫疾病•遗传学和遗传状况•癌症•解释,分析和评估科学信息3.实用的微生物学和传染性疾病•微生物的分类•传染病•培养和识别微生物•抗菌剂对生长的影响以及进一步的内部评估单位:•人类的繁殖和生育能力:•生殖系统•生殖系统•激发•div
