准确的信息处理在技术和自然界中都是至关重要的。为了实现它,任何信息处理系统都需要初始资源供应远离热平衡。在这里,我们建立了可以通过给定数量的非平衡资源来实现准确性的基本限制。该限制适用于任意信息处理任务和任意信息处理系统受量子力学定律的影响。它很容易计算,并且用熵数量表示,我们将其命名为反向熵,与所考虑的信息处理任务的时间逆转相关。对于所有确定性的经典计算及其所有量子延伸都可以达到极限。作为一种应用程序,我们建立了非quilibrium和准确性之间的最佳权衡,用于存储,传输,克隆和擦除信息的基本任务。我们的结果设定了接近最终效率限制的新设备设计的目标,并提供了一个框架,以证明量子设备的热力学优势比其经典配料。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
该工具在Tulane开发的工具与大学卫生网络/多伦多大学,肺炎儿童健康研究(PERCH)研究的样品进行了测试,以及国际Mycose预防,研究,研究,实施,网络和培训(Imprint)联盟(Impint)。
纳米孔信号分析能够检测天然DNA和RNA测序的核苷酸修饰,从而在没有其他文库准备的情况下提供了准确的遗传/转录组和表观遗传信息。目前,只能直接对一组有限的修改(例如5-甲基胞霉素),而大多数其他则需要探索方法,这些方法通常以纳米孔信号与核苷酸参考的比对开始。我们提出了Uncalled4,这是一种用于纳米孔信号对准,分析和可视化的工具包。uncalled4具有有效的带信号对准算法,BAM信号对准文件格式,用于比较信号对准方法的统计数据以及基于K-MER的孔模型的可重复的DE NROVE训练方法,揭示了ONT尚未访问的途径的可能错误。我们在七个人类细胞系中的RNA 6-甲基趋化(M6A)检测应用于RNA 6-甲基丹宁(M6A),使用M6ANET鉴定的修饰比Nanopolish多26%,其中包括M6A已知在癌症中具有含义的几种基因。uncalled4可在github.com/skovaka/uncalled4上开放源4。
“我们的传感器就像呼吸的高度准确的麦克风,”曼彻斯特大学研究员Cinzia Casiraghi教授说。“它可以在气流中最微小的变化,从而为个人提供有价值的生理信息,例如,与他们的心脏,神经和肺部状况以及某些类型的疾病有关。”
摘要:本文介绍了一种用于健身运动形式检测的自动化系统,利用MediaPipe [1]进行实时姿势估计,而OpenCV [2]进行计算机视觉处理。该系统在练习中分析诸如下蹲,硬拉和二头肌卷曲等练习中的关键身体地标,从而立即提供了形式准确性的反馈。通过检测不正确的姿势,例如膝关节不当或背部曲率,该系统旨在降低受伤的风险并提高锻炼效率。所提出的方法旨在轻巧,易于访问且能够在消费级硬件上运行,从而使其可用于广泛使用。实验结果表明,检测常见形式错误的准确性很高,展示了该系统作为传统个人培训的一种具有成本效益的替代品的潜力。这项工作有助于自动健身监测的不断增长的领域,并突出了计算机愿景在改善运动安全性和性能中的作用。关键字:锻炼形式检测,媒体管,OpenCV,姿势估计,计算机视觉。
体细胞变体检测是癌症基因组学分析的组成部分。尽管大多数方法都集中在短阅读测序上,但长阅读技术现在在重复映射和变体相位方面具有潜在的优势。我们提出了一种深度学习方法,一种深度学习方法,用于从短读和长阅读数据中检测体细胞SNV,插入和缺失(indels),具有用于全基因组和外显子组测序的模式,并且能够以肿瘤正常,唯一的肿瘤正常,ffpe pppe的样本进行运行。为了帮助解决公共可用培训的缺乏和基准测试数据以进行体细胞变体检测,我们生成并公开提供了一个与Illumina,Pacbio Hifi和Oxford Nanopore Technologies的五个匹配的肿瘤正常细胞线对的数据集,以及基准的变体。在样本和技术(短读和长阅读)中,深度态度始终优于现有呼叫者,特别是对于Indels而言。
符号AI构建了智力行为的计算模型,重点是世界的象征性表示,然后使用逻辑和搜索来解决问题。这些AI模型由声明知识组成,这些事实描述了现实世界和程序知识,这些事实指定了声明知识的不同元素如何相关。这些符号模型中的推理是通过建立由通过程序知识(节点之间的连接)连接的声明知识(节点)形成的知识图来构建的。这些知识图被视为逻辑规则,或者更普遍地为基于规则的系统(RBS)。使用符号AI模型时出现的问题之一是,现实世界中的知识很少完全准确。在本文中,我们假设可能以两种不同的方式存在不准确性:(1)当它与声明性知识相关联时,即对给定事实的描述有多准确。(2)当它与程序知识相关联时,即与证据有关的不确定性
