35J20二阶椭圆方程的变异方法35J25二阶椭圆方程的边界价值问题35J60非线性椭圆方程35J50椭圆系统的变异方法35QXX expliatiation and Inteplation 49Q05最小值的数学物理和其他区域的偏差方程在优化49q20的几何措施理论环境中的正常术中的正常临界值53Z05差分几何形状到物理学58E15差异问题,涉及几种变体中极端问题的变化问题; Yang-Mills功能58E20谐波图等。81T13 YANG-MILLS和其他量规理论81T13 YANG-MILLS和其他量规理论
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月28日。 https://doi.org/10.1101/2025.01.08.632037 doi:biorxiv preprint
我们研究了空间曲率和拓扑结合对真空状态的性质的构造效应,用于旋转对称的2D弯曲管上的带电标量。对于一般的空间几何形状,对于具有一般阶段的准静脉条件,在明确提取拓扑贡献的情况下,提供了Hadamard函数的表示。作为真空状态的重要局部特征,研究了当前密度的期望值。真空电流是由管子量子周期封闭的磁孔的周期性功能。为恒定半径和圆锥管指定了通用公式。作为另一种应用,我们考虑了在Beltrami伪球层上标量场的Hadamard函数和真空电流密度。为相应的期望值提供了几种表示。对于管的适当半径的小值,与曲率半径相比,空间曲率在真空电流上的影响很弱,并且在相应膨胀中的主要术语与恒定半径管上的电流密度相吻合。曲率的影响对于大于空间曲率半径大的管的适当半径至关重要。在此限制中,当前密度的秋季效果作为适当半径的函数,遵循无质量和大型领域的幂律。这种行为与恒定半径管的形式明显形成鲜明对比,并具有巨大的场的指数衰减。我们还比较了Beltrami伪层上的真空电流以及局部的保姆和抗DE保姆2D管上的真空电流。
1个纳米技术小组,用户 - 纳米纳布,萨拉曼卡大学,萨拉曼卡大学,塞拉梅尔广场,特林里奇建筑,37008,西班牙萨拉曼卡2加州纳米科学和纳米技术研究所,CSIC和BISTI,BISTI,BISTI,BERCUS UAB,UAB,BELLATERRA,BELLATERRA,0893 BATITA,SPINES,FITIS,FINE,弗里,FINE,393 BARCEN,FINE,FINE,FINE,FINE,FINE,林库,FINE,FINE,FINE,3。 24210-346 NITITIROI RJ,巴西4 GISC,DeFísicade Carteres,Cromputense大学,28040,西班牙马德里,55040,加利福尼亚州伯克利大学,加利福尼亚大学94720,美国64720,美国6材料科学司,伯克利国家实验室,伯克利材料机构,美国64777777777770年7月7日科学,1-1 Namiki,Tsukuba,305-0044,日本8国际材料纳米级核库中心,国家材料科学研究所,1-1 Namiki,Tsukub,Tsukub 305-0044,日本9.日本9. Avançats,08010巴塞罗那,西班牙11号Minho和Porto University(CF-HUM-UP),Braga,Braga,葡萄牙12 InstitutodeFísicaInstitutodeFísica,联邦联邦政府Rio De Janeiro,C.P。68528,21941-972里约热内卢RJ,巴西
电导调节剂(CFTR)(Moran,2017)和细胞内钙离子(Ca 2+)激活Anoctamin-1(Ano-1,TMEM16A)(Caputo等,2008)。当前的研究重点是通过增加细胞外质子(H +)浓度激活的Cl-通道。所谓的质子激活外部整流阴离子通道(PAORAC)或酸敏感的外部整流(ASOR)通道在细胞外酸性后介导Cl - 伏布(Lambert and Oberwinkler,Wang等,2007; Wang et al。,2007; Ma等)。tmem206是Paorac/ASOR的分子成分,在2019年已被两个独立研究小组鉴定出来(Ullrich等,2019; Yang等,2019)。此外,最近已经解决了TMEM206的结构:TMEM206形成一个同型通道,每个单体具有两个跨膜跨度的螺旋(Ruan等,2020; Deng等,2021)。根据人类蛋白质地图集,TMEM206显示出几乎普遍存在的mRNA表达,在大脑,肾脏和淋巴组织中最突出的表达(人类蛋白质Atlas,2023)。尚未完全理解其生物学功能。在亚细胞水平上,据报道TMEM206的Cl-电导率可预防内体高酸性(Osei-Owusu等,2021)。此外,已经发现TMEM206有助于大肺炎的收缩,这是一种在免疫和癌细胞中特别重要的内体类型的内体。TMEM206的破坏可降低大细胞体的分辨率,并增加癌细胞的白蛋白依赖性生存率(Zeziulia等,2022)。Wang等。Wang等。除了在囊泡中的丰度外,TMEM206还定位于质膜。在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。 提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。 尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。 人体内的某些隔室还显示接近TMEM206激活阈值的pH值。 在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。 因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。 为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。 对通道的药理抑制避免了敲除或敲除的补偿机制。 此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是>在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。人体内的某些隔室还显示接近TMEM206激活阈值的pH值。在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。对通道的药理抑制避免了敲除或敲除的补偿机制。此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是tmem206受到常见的Cl-通道抑制剂DID(4,4' - 二硫代硫代氨基-2,2,2'-省二硫酸)的抑制作用对于TMEM206(Liantonio等,2007; Guinamard等,2013)。
以越来越多的精度控制电子对于经典和量子电子既重要。自激光发明以来,驯化了连贯的光的每个属性,使其成为科学,技术和医学最精确的工具之一。连贯的控制涉及将光的精美定义特性转导向电子系统,从而将连贯性赋予其组成电子的属性。相干控制中的早期开发利用了高斯激光束和空间平均测量。激光的空间结构和轨道角动量为凝结物质系统中的电子和准粒子激发提供了额外的自由度。从这个角度来看,我们首先介绍了半核对器中相干控制的概念。然后,我们继续讨论结构化光束在相干控制中的应用以及对空间分辨出术检测的要求。随后,我们介绍了使用圆柱矢量束和具有结构相位前部的激光束进行的最新实验的概述。最后,我们提供了这些发展和未来感兴趣的方向的视野。
磁绝缘子是通过利用镁电流来传播自旋信息的理想平台。但是,到目前为止,大多数研究都集中在Y 3 Fe 5 O 12(YIG)和其他一些铁磁性绝缘子上,而不是纯铁磁体。在这项研究中,我们证明了镁电流可以在EUS的薄膜中传播磁极。通过使用PT电极进行EUS的18 nm厚胶片中的局部和非局部转运测量,我们检测到由Spin Seebeck效应引起的热产生产生的镁电流。通过比较局部和非局部信号与温度(<30 K)和磁场(<9 t)的依赖性,我们确认了非局部信号的镁传输来源。最后,我们在EUSFIM(〜140 nm)中提取了镁扩散长度,这是与在同一纤维中测得的大吉尔伯特阻尼的良好对应关系。
引言 ................................................................................................................................................................................ 140 创造力是感知、认识和批判世界的一种方式 ................................................................................................................ 142 研究目的和研究问题 ................................................................................................................................................ 145 研究参与者 ...................................................................................................................................................................... 145 连帽衫下的见解:并非在我们可能思考的时刻适合所有人 ............................................................................. 149 方法论 ............................................................................................................................................................................. 150 研究方法 ............................................................................................................................................................................. 151 声音会议工作坊 (SSW) ............................................................................................................................................. 152 声音收集和 C分类(SCC)表................................................................................................ 154 声音片段(SP)................................................................
如果没有主题专家的贡献,本报告的整体和全球内容就不会如此完整,他们帮助我们形成了对技术驱动的系统性风险和可能的风险缓解方法的思考。我们特别感谢该项目的指导委员会和工作组。他们的专业知识和慷慨的时间非常宝贵。同样至关重要的是世界经济论坛对这一倡议的持续机构支持以及我们主席的领导,他对一个更具包容性、弹性和可持续性的世界的愿景,特别是在这个日益复杂和分散的时代,一直是这项工作不可或缺的一部分。最后,我们感谢德勤对这个项目的承诺和支持。
量子热力学与微观系统及其环境之间的能量和物质之间的变化有关,以及它们在热力学数量(例如热,工作,熵等)方面的描述。[1]。近几十年来,量子运输引起了很多关注,例如,通过分子连接的热量和电荷传输[2-4]。在原子水平上,温度(化学电位)梯度会导致材料中的载体从热(高电位)到冷(低电位),并且可以利用这种效应来测量温度,产生电力,等等。运输现象对各种类型的科学搜索(包括物理学)非常重要,这不是秘密。此外,还对量子运输进行了广泛的研究,以便继续在纳米构造方面进行进展。此外,纳米级制造技术的最新进展导致了非平衡(NE)量子杂质系统的理论和实验开发[5-9]。量子杂质通常称为量子点。在具有初始NE状态的这种类型的系统中,能量和颗粒在系统和环境之间换成以恢复平衡。对于经典系统,这种平衡通常会导致热稳定性。因此,当在不同的温度和化学电位上连接到七个铅时,NE稳态电流发生在量子点(中心区域)上。因此,这会导致连续的熵产生和时间反转对称分解。对NE稳态的研究表明,与等级态相比,它们将能量不断地耗散到周围的环境中。今天,量子电池(QB)代表了重要的研究领域,该领域涉及设计最佳的能量存储前供应量子,以转移到量子设备。现在,已经进行了一系列理论上的效果,包括检查量子资源如何影响QB的效果[10-16],为实现高电荷和容量的最佳机制提供了模型,例如高充电和容量[17-21],对环境[22,23],对环境[22,23],<
