一般振动评估 当实验室处理微纳米技术时,振动监测至关重要,以确保以最高的精度和可靠性实现最佳制造工艺。振动由多种来源产生,包括地面的弱地震运动、机械、结构和其他来源(图 1)。在实验室的设计阶段,通常会进行特定的建模,以分析并将其与外部振动源隔离。一个关键方面是从一开始就使用特定的材料和施工技术来摊销地面振动,由于相关成本非常高,很少在施工后实施。然而,正如前面提到的,它并不是唯一需要解决的振动,也来自内部来源。为了检测和减轻所有这些振动,需要进行监测,分析全频谱并隔离相关频率。在隔离阶段之后,下一步是与 VC 曲线相关的实验室评估,以符合特定仪器在可接受的振动噪声基底方面的要求。
在恒幅试验条件下,金属和合金的疲劳裂纹扩展 (FCG) 行为通常用裂纹扩展速率 da/dN 与应力强度因子范围� K 之间的关系来描述。图 1 示意性地显示了速率 da/dN 与� K 的典型对数-对数图,该图具有 S 形,可分为三个区域 [1-4]。区域 I 是近阈值区域,其中曲线变得陡峭并似乎接近渐近线� K th ,即下限� K 值,低于该值预计不会发生裂纹扩展。区域 II(中间区域)对应于稳定的宏观裂纹扩展。巴黎幂律 [5] 是一种经验关系,在对数-对数拟合中显示一条直线,是中等裂纹扩展速率(10 -8 至 10 -6 m/循环)此区域中疲劳的基本模型。区域 III 与最终失效前的快速裂纹扩展有关,主要受 K c 控制,即材料和厚度的断裂韧性。长期以来,人们观察到,对于固定的 � K ,da/dN 受应力循环不对称性的强烈影响,通常以载荷比 R 表示 [6-8]。发现阈值应力强度值 (� K th ) 取决于 R
金属和合金在恒幅试验条件下的疲劳裂纹扩展 (FCG) 行为通常用裂纹扩展速率 da/dN 与应力强度因子范围 ' K 之间的关系来描述。图 1 示意性地显示了速率 da/dN 与 ' K 的典型对数-对数图,该图具有 S 形,可分为三个区域 [1-4]。区域 I 是近阈值区域,其中曲线变得陡峭并似乎接近渐近线 ' K th ,即下限 ' K 值,低于该值预计不会发生裂纹扩展。区域 II(中间区域)对应于稳定的宏观裂纹扩展。巴黎幂律 [5] 是一种经验关系,在对数-对数拟合中显示一条直线,是中等裂纹扩展速率(10 -8 至 10 -6 m/循环)此区域中疲劳的基本模型。区域 III 与最终失效前裂纹的快速扩展有关,主要受 K c 控制,即材料和厚度的断裂韧性。长期以来,人们观察到,对于固定的 ' K ,da/dN 受应力循环不对称性的强烈影响,通常用载荷比 R 表示 [6-8]。发现阈值应力强度值 ( ' K th ) 取决于 R
■ 合金文摘 ■ 国际材料评论 ■ 失效分析与预防杂志 ■ 材料工程与性能杂志 ■ 相平衡与扩散杂志 ■ 热喷涂技术杂志 ■ 金相、微观结构与分析 ■ 冶金与材料交易 A ■ 冶金与材料交易 B ■ 形状记忆与超弹性