为了生产二维材料的纳米结构,通常使用自上而下的技术,例如光刻[6]、电子束光刻(EBL)[7]和离子束光刻[8]。最近观察到,使用电子或离子的光刻技术可能会导致二维材料的结构损伤[9]或增加抗蚀剂污染,而这些污染需要通过等离子清洗去除。[10]激光烧蚀是一种无抗蚀剂的一步式替代方法[11–13],但光学衍射极限阻碍了其在需要亚微米分辨率的场合使用。自下而上的技术,例如化学气相沉积和位置选择性生长[14,15],可实现可扩展性和高分辨率。然而,复杂器件结构的可重复制造和器件集成仍未解决。扫描探针光刻(SPL)包含一组纳米光刻技术,可实现需要超高分辨率的独特应用。 [16] SPL 的工作原理基于纳米探针和表面之间的各种物理和化学相互作用,并且已应用于 2D 材料的机械划痕、[17] 局部氧化、[18,19] 和浸笔工艺。[5] 具体来说,热扫描探针光刻 (t-SPL) 是一种新兴的直写方法,它使用加热的纳米尖端进行 2D 和 3D 减材/增材制造。[20–22] t-SPL 的图案创建是通过使用加热的纳米尖端连续压痕样品同时扫描样品来完成的。除了超快写入之外,还可以用冷尖端对样品进行成像,类似于传统的原子力显微镜 (AFM),从而实现闭环光刻和图案叠加。在这里,我们表明,通常应用于可升华聚合物的热机械压痕技术也允许直接切割 2D 材料。为此,我们在环境压力和温度下使用 t-SPL,通过加热的纳米尖端局部热机械切割 2D 材料的化学键。展示了单层 MoTe 2 的 20 纳米分辨率图案,以及它对其他 2D 材料(如 MoS 2 和 MoSe 2)的适用性。相对于 EBL,所提出的技术不需要高真空并可避免电子诱导损伤,因此可以非常经济高效的方式轻松实施,以制作高质量 2D 纳米结构的原型和制造。对于大多数应用,2D 材料的功能性纳米结构必须通过光刻技术进行图案化。在这里,我们开发了一种用于单层 2D 材料的一步光刻技术,也称为直接纳米切割,使用热机械压痕法,如图 1 a 所示。为此,我们将 2D 材料薄片直接转移到 50 纳米厚的可升华聚合物层上,该层由旋涂机制成,然后通过热机械压痕法进行图案化。
摘要:在土方机械上应用斜切刀式无斗底卸转子,与推土机、平地机等广泛使用的机械相比,可显著提高土方机械在道路施工中的开挖量。给出了安装在无斗底卸转子上的斜切刀受力的载荷图。考虑了转子切刀逐层开挖土壤时,由于转子沿直线轨迹旋转运动和端部进给,切割元件在空间中产生的复杂运动,力的作用。获得了直线端部进给下无斗底卸转子单个斜切刀挖掘力分量的依赖关系。安装在土方机械框架上的斜切刀式无斗底卸转子直线运动,不仅可以通过无斗底卸转子的转速增加其输出,还可以挖掘现有土方机械无法挖掘的高硬度土壤。关键词:无膛线转子 下部卸载 斜切削 切削力 斜切削刀 1. 引言
这一现象最早是在 20 世纪 50 年代初 Salvador Luria 和 Giuseppe Bertani 实验室的工作中发现的。他们发现,一种噬菌体 λ 可以在大肠杆菌的一种菌株(例如大肠杆菌 C )中生长良好,但当在另一种菌株(例如大肠杆菌 K )中生长时,其产量会大幅下降。大肠杆菌 K 宿主细胞(称为限制性宿主)似乎能够降低噬菌体 λ 的生物活性。限制性酶 = 限制性内切酶
执行摘要 UMR 系统工程哲学博士课程 20 世纪 90 年代末,UMR 与南加州大学响应波音公司的“征求建议书”并获胜,为波音工程师及其全球承包商提供系统工程理学硕士 (MS) 学位,2000 年系统工程硕士学位获得了 CBHE 批准。目前,该课程有 270 多名学生入学,截至 2005 年秋季学期,已有 150 多名学生毕业。系统工程课程被认为是全国最好的课程之一,吸引了来自不同公司和实验室的学生,例如美国空军、美国陆军、国家地理空间情报局 (NGA)、洛斯阿拉莫斯国家实验室、通用汽车、洛克希德马丁、雷神公司、Sprint、Brewer Science、Briggs and Stratton、Hollister Corporation 和新加坡航空公司。美国大学的博士学位课程数量有限。仅工程系统大学委员会 ( http://www.cesun.org/ ) 就列出了 10 多个系统工程和/或与系统工程相关领域的教职职位。为了满足对受过培训的系统工程师日益增长的需求,UMR 提议开设系统工程博士学位课程,该课程将以目前系统工程硕士研究生课程的成功为基础,从而帮助满足对系统工程博士学位日益增长的需求。拟议的系统工程博士学位课程将在很大程度上取决于硕士学位课程。它将通过跨越 UMR 的所有四所学院和学院,为同意参加系统工程博士学位课程的大约 30 名教职员工提供各种学科的多样性。课程将在校园内授课,并通过 UMR 的众多远程教育教室之一通过互联网进行现场直播。UMR 已建立此基础设施,即视频通信中心 (VCC)。拟议的新学位将给大学带来额外的成本负担,因为它主要使用现有的课程和实验室,并带来可观的学费收入。该学位课程的收入将来自校内和校外学生支付的学费。UMR 已签订合同,通过互联网向波音公司员工提供系统工程研究生课程。董事会批准的远程学生现行费率为每三学分课程 3,802 美元,而校内学生的学费为 937 美元,外加 IT、活动和健康服务费用。系统工程博士学位符合 UMR 校园的方向和战略计划(http://campus.umr.edu/chancellor/stratpln/)。UMR 的目标是到 2010 年成为美国排名前五的技术大学之一。系统工程项目的内容和目的方向也体现了企业家精神和跨学科合作的价值,这些价值超越了传统的界限。最后,开发系统工程博士课程还将满足校园战略计划,增加入学人数,扩大研究绩效和声誉,丰富学生体验,并促进寻求外部机会。
这款轻型套件提供高达 30 A 的切割电流,可实现高达 8 mm 的高质量切割(切断 10 mm)。该电子装置由微处理器控制,通过数字显示屏显示参数和消息。拖曳切割专利磨损部件,配备快速连接系统,确保最高的生产率和质量。压力由电子传感器测量,逆变器技术可降低电流消耗。割炬和双动扳机的设计确保了操作员的安全。