蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
1.9a,2.2b和2.1a)分别向甲状腺素,Nodosilinea和Microcoleus属。属于这些属的蓝细菌经常在土壤/生物群中发现(Couradeau等人2019; Mehda等。2021; Mühlsteinová等。2014; Radzi等。2019; Roncero-Ramos等。2019; Samolov等。2020),例如trichocoleus菌株在沙漠土壤中很常见(Mühlsteinová等。2014;张等。2016),微弹性被认为是国际化生物分类单元之一(M. chaginatus通常是生物库的主要成员)(Couradeau等人。2019; Mehda等。2021; Roncero-Ramos等。2019),以及在土壤/生物群中也发现了Nodosilinea属的代表,即荒漠和南极地区(Mehda等人。2021; Perkerson等。2011; Radzi等。2019)。丝状分离物2.1b属于绿色藻类klebsormidium,也
建筑物和古迹通常是由微生物殖民的,这些微生物可能导致色彩变化以及美学和物理化学的损害。这种生物殖民化取决于材料和环境。为了更好地理解和将建筑物表面的微生物发育与气象参数相关联,已经使用在两个时期的巴黎地区私人居住区的壁上的原位仪器来测量绿色藻类和蓝细菌的浓度:春季和秋季冬季。还选择了不同的位置来评估位置(地平线或垂直)和情况(阴影与阳光微气候)的影响。结果表明,微生物的发展迅速响应降雨事件,但随着温度较低,相对湿度(RH)较高,冬季的反应更加强烈。蓝细菌对这种季节作用不太敏感,因为它们比绿藻更耐药性。基于所有数据,已经制定了不同的剂量反应函数,以将RH,雨水和温度与绿藻浓度相关联。通过特定的拟合参数来考虑微气候的影响。这种方法必须扩展到新的广告系列测量结果,但对于预测气候变化的影响可能非常有用。
(发行日期)2021-03-31(资源类型)书籍部分(版本)接受手稿(权利)©2021 Springer Nature Singapore Pte Ltd.
这项工作是由一个跨机构作者团队开发的,并得到了三角洲水质的许多敬业和热情保护者的支持。这项工作具体基于水资源部佩吉·莱曼博士发表的材料、加州水务局的淡水有害藻华监测框架和战略(南加州沿海水研究项目和州水资源控制委员会 2021 年)、三角洲区域监测计划的营养物长期规划、中央谷地区水质委员会的三角洲营养物研究计划以及三角洲独立科学委员会的萨克拉门托-圣华金三角洲水质科学(2018 年)和萨克拉门托-圣华金三角洲监测企业审查(2022 年)。我们非常感谢以下个人对本文档的开发提供的反馈和指导。
摘要。蓝细菌生物多样性代表了潜在发现新的有前途微生物物种的重要储藏。这项研究的目的是探索蓝细菌的多样性,并确定位于Zhetysu地区的Zharkent地热春季中发现的耐热物种。在从春季开始抽水时,温度达到75-80°C。在溪流周围鉴定出微生物聚集的形式的蓝细菌垫。九种蓝细菌种类,包括synechococcus,phormidium,gloeocapsa,uscillatoria,fischerella和nostoc。在居住在温泉的蓝细菌中,有44%是非核形式,而其余的则表现出杂化特性或作为单细胞生物存在。振荡量最为主要的,包括四个物种,其次是三个物种的阶次。从地热弹簧中分离出蓝细菌的纯培养物,例如eSciltotoria formasa,nostoc cuminca,nostoc cumince,anabaena cylindrica和fischerella thermalis。在不同温度下,对这些培养物进行了Thermotolext56rance评估。所有检查的菌株在45-50°C时表现出高生长速度,在55和60°C下的增长速度下降。最佳生长温度为45-50°C,除了Fischerella Thermalis菌株,该菌株在60°C下显示活性生长。获得的结果强调了分离菌株在生物技术中的潜在应用。
蓝细菌通常称为蓝绿色藻类,是一组光合细菌,可以在湖泊,池塘和河流中传播,形成盛开。蓝细菌的开花通常被称为有害藻华(HAB),这是由于某些蓝细菌产生氰诺毒素的能力,对人类和动物造成了健康危害。1个腐烂的花朵也会导致水中溶解的氧气迅速耗尽,这可能导致鱼突然死亡。HAB在夏季和加拿大早秋季最多产,当时休闲用水也是最多的。加拿大卫生部已经建立了评估水质和管理娱乐淡水中蓝细菌风险的指南,2,并为一组氰毒素(MC)设定了指南限制。此限制(10 µg/L)旨在保护在游泳等活动期间因意外摄入水而暴露的最脆弱的人群(儿童)。
摘要蓝细菌是光合作用的原核生物,近年来因其潜在的健康益处而引起了人们的关注。蓝细菌的一种显着特性是它们的高抗氧化能力,这归因于各种有益特性。抗氧化剂在人体中至关重要,因为它们有助于清除会导致细胞损害并导致疾病的自由基。使用蓝细菌和其他微生物的食物发酵已有几个世纪以来一直是一种传统的实践,并且已被发现增强了食物的抗氧化能力。本评论的论文旨在探讨蓝细菌在解锁发酵食品和食品微生物的抗氧化潜力方面的潜力。同时讨论了蓝细菌衍生的抗氧化剂的作用机理以及食用含有蓝细菌的发酵食品的潜在健康益处。
摘要 蓝藻是一种光合生物,在碳循环中发挥重要作用,是很有前途的生物生产底盘。在这里,我们从独特的海洋环境中分离出两种具有 4.6Mbp 基因组的新型蓝藻,UTEX 3221 和 UTEX 3222,这些蓝藻的 CO₂ 自然升高。我们描述了这两种分离物的完整基因组序列,并重点研究了 UTEX 3222(因为它在液体中浮游生长),描述了与生物技术相关的生长和生物量特性。UTEX 3222 在固体培养基上超过了其他快速生长的模型菌株。它可以在液体培养基中每 2.35 小时翻一番,并在批量培养中生长到高密度(>31 g/L 生物量干重),几乎是最近报道的高密度生长的 Synechococcus sp. PCC 11901 的两倍。此外,UTEX 3222 易于下沉,比其他快速生长的菌株沉降速度更快,这表明收获 UTEX 3222 生物质具有良好的经济效益。这些特性可能使 UTEX 3222 成为海洋二氧化碳去除 (CDR) 和 CO₂ 光合生物生产的有力选择。总体而言,我们发现在自然 CO₂ 升高的环境中进行生物勘探可能会发现具有独特特征的新型 CO₂ 代谢生物。