“使用Conflex Heatseal,我们提供了一张商业上可行的可爱纸,该纸支持企业从塑料过渡。它在现有纸质回收系统中提供了强大的密封性能和可回收性,并在Billerud提供过渡支持的稍微修改的转换过程中工作。很高兴看到我们如何实现通过创新为低碳社会制造高性能包装材料的目的。”
日益增加的全球对锂离子电池的依赖 - 从手持设备到电动汽车的所有功能都促进了能源存储和机动性部门的转变。但是,这种快速增长在电池生命周期结束时提出了重大挑战。尤其是,锂离子电池的处理和回收已成为环境管理和资源保护中的关键问题。回收这些电池不仅对于减轻危险物质(例如重金属和有机电解质)的生态影响至关重要,而且对于恢复了锂,钴,镍和铜等有价值的材料[1]。随电池设计和应用而变化的锂离子电池化学的复杂性刺激了广泛的研究,以开发有效的回收方法。传统的高光脂化技术虽然已广泛实施,但受到其高能量消耗和潜在的环境危害的挑战。在响应中,利用水溶液来溶解电池组件的水透析过程已经获得了牵引力。直接回收的最新进步有望在减少回收操作的环境足迹的同时,更大的活性材料恢复了[2]。这些技术创新是从线性的“收割机 - 物种”模型过渡到更循环的经济中的核心,在这种经济中,将废物重新用于新产品。在全球范围内,政策框架开始赶上电池技术的快速发展。在欧洲,严格的法规和经济激励措施加速了建立复杂的回收设施,并促进了对绿色过程的研究[3]。同样,在北美和亚洲,政府倡议和私营部门投资正在推动可以作为其他地区模型的创新。,尽管取得了这些进步,但仍然存在许多挑战。这些包括电池设计的变化,拆卸困难以及与扩大回收过程相关的经济障碍,以匹配持续的电池量的增长[4]。此外,锂离子电池回收的全球维度要求国际协作和标准协调。监管政策,市场条件和技术准备就绪的差异可能会阻碍材料和扼杀创新的有效流动。将生命周期评估的整合到决策制定中,并制定标准化的回收协议可以显着提高恢复率并最大程度地减少环境影响。在这种情况下,本综述旨在通过检查当前的最新回收技术,其环境和经济影响以及不断发展的监管环境来提供有关回收锂离子电池的全面观点。通过利用案例研究和最新研究结果,本文强调了可以促进可持续电池回收生态系统的关键问题和潜在解决方案[5]。
在发布政策中指定了此版本的手稿的重复使用条款和条件。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。有关所有使用条款和更多信息,请参见发布者的网站。
癌症免疫周期为抗癌免疫反应中的一系列事件提供了一个框架,该事件是由T细胞介导的肿瘤细胞杀死引发的,这导致抗原表现和T细胞刺激。当前针对乳腺癌的免疫调节疗法通常与短持续时间相关,靶向作用部位较差以及严重的副作用。水凝胶及其细胞外基质的特性,可调的特征和多样化的生物活性性,引起了人们对局部传递免疫调节剂和细胞的能力的显着关注,从而提供了免疫调节性的微型微环境,以促进,激活和扩展宿主免疫细胞。本综述着重于水凝胶平台的设计考虑因素,包括聚合物主链,交联机制,物理化学特性和免疫调节成分。突出显示了各种水凝胶系统在乳腺癌治疗和组织再生中的免疫调节作用和治疗结果,包括用于免疫调节剂输送的水凝胶库,用于细胞输送的水凝胶支架以及依赖于固有材料的免疫调节水凝胶。最后,讨论了当前系统和未来的免疫调节水凝胶方向的挑战。
从2003年起,中国金属需求的非常快速的增长导致了一种矿业公司不断追逐行动目标的情况。这种情况因中国建筑需求的强度和中国制造业的高金属强度而加剧了这种情况,至少在最初,这种情况很少关注金属储蓄技术。在15年中,铜和其他基准金属的价格在2008年的金融危机之后的2009年中保持异常高(2009年的中断),直到产量陷入困境,而中国人的增长放缓。图1图表在1960 - 2024年期间铜(实线)和铁矿石(断线)价格。
为了阐明CO 2(ECO 2),C捕获和营养可用性之间的反馈,伯明翰森林研究所(BIFOR)在英国一个成熟的温带森林中建立了一个自由空气co 2富集(面部)设施,在其中将三个面孔阵列(30 m DIA)暴露于高高的CO 2(+150 PPM)在+150 ppm上方的杂物(+150 ppm)生长时,ambient ambient ambient Ambient ambient Ampiest ambient Ampiest ambient ampient ambient ampiest ampient。1面部富集始于2017年,一直持续到迄今为止。响应于CO 2的富集,光合作用CO 2在头三年中平均增加了23%,而这种增强的吸收是由CO 2富集的第七年所维持的。2增强的CO 2摄取导致树木干物质(+10.5%)的总体显着增加,树木基础面积增量增加了28%。通过垃圾降落(+9.5%),根渗出液(+40%)以及有机和矿物质土层中的细根生物量和特异性根长的地下C分配。与确认和量化CO 2受精效应程度的环境阵列相比,在ECO 2下计算出的2021年和2022年的总净初级生产率更高约2吨。
了解环境溶解的有机物(DOM)依赖于能够导航其固有复杂性的方法的发展。尽管分析技术一直在不断提高,从而改善了散装和分级DOM的见解,但单个化合物类别的命运几乎不可能通过当前技术跟踪。以前,我们报道了羧酸盐富含甲基分子(CRAM)化合物的合成,该化合物与以前可用的标准相比,与DOM共享更相似的分析特征。在这里,我们采用我们的合成式烤箱化合物并将它们与选择的一组策划的一组购买的分子以及选择的生物学或化学相关性的附加策划的一组购买的分子一起,采用我们的合成的CRAM化合物,将常规使用DOM用作批量材料。辐照实验通常表明,在饱和碳主链上仅携带羧酸和/或酒精的化合物对光化学降解具有最具耐药性,但在DOM的存在下,某些具有CRAM样式和化学功能的化合物也更稳定。在微生物孵化中,在各种水生环境中8个月后,我们的所有合成cram均完全稳定。这些实验集为环境中提议的CRAM的稳定性提供了支持,并提供了一个平台,可以使用该平台,可以使用多种多样的分子来帮助探测DOM的稳定性。