胚胎培养基中的微生物污染可能会影响 IVF 过程中胚胎的早期发育和临床结果。生殖道感染是培养污染的最常见原因,但环境空气质量也可能对接受 IVF 程序的不孕夫妇的生殖结果产生不利影响。胚胎学实验室的微生物污染监测是强制性要求,并且每天在层流垂直罩下进行检测。在本研究中,我们调查了在实验室 5 年活动中,当层流罩下发生阳性被动空气采样且胚胎培养中没有明显污染时进行的 IVF 结果。我们进行了 570 次空气采样,在 13 例(2.28%)的 TSA 沉降板中分离出至少 1 CFU 的微生物。由于显微镜下没有可检测到的微生物或肉眼可见培养基浑浊度/颜色变化(污染率为 0%),因此不怀疑培养基中存在感染。 “受污染”的 P 组和“阴性”的 N 组在生化妊娠率、活产率和流产率方面没有统计学上的显著差异。令人惊讶的是,我们发现 P 组的临床妊娠率比 N 组更高,这一发现可能是由于 P 组的意外年龄较低(p = 0.0133)。数据显示,在胚胎培养基中没有可检测到的污染的情况下,当 A 级环境中出现空气阳性样本时,IVF 周期是安全的。
在快速发展的太阳能领域,光伏 (PV) 制造商不断面临光伏组件因局部过热(通常称为热点)而退化的挑战。这个问题不仅会降低太阳能电池板的效率,而且在严重的情况下还会导致不可逆转的损坏、故障甚至火灾隐患。为了应对这一关键挑战,我们的研究引入了一种创新的电子设备,旨在有效缓解光伏热点。这种开创性的解决方案由电流比较器和电流镜电路的新颖组合组成。这些组件与自动切换机制独特地集成在一起,特别是消除了对传统旁路二极管的需求。我们在具有相邻和非相邻热点的光伏模块上对该设备进行了严格的测试和验证。我们的发现具有开创性:热点温度从危险的 55°C 显着降低到更安全的 35°C。此外,这种干预措施显着提高了模块的输出功率高达 5.3%。这项研究不仅为长期存在的太阳能电池板效率问题提供了切实可行的解决方案,而且为提高太阳能光伏系统的安全性和寿命开辟了新的途径。
Thibaut Maury、Philippe Loubet、Sarah Morales Serrano、Aurélie Gallice、Guido Sonnemann。环境生命周期评估 (LCA) 在航天领域的应用:最先进的技术。 Acta Astronautica, 2020, 170, 第 122 页 - hal-03489594
从化石能源向可再生能源的过渡需要开发可持续的电能存储系统,该系统能够容纳越来越多的能源,功率更大,持续时间更长。液流电池被视为应对这一挑战的有前途的技术之一。由于该技术领域的不同创新仍在开发中,可重复、可比较和可验证的生命周期评估研究对于提供不同液流电池系统可持续性的明确证据至关重要。本文基于对 1999 年至 2021 年期间发表的不同液流电池系统的 20 项相关生命周期评估研究的回顾,探讨了与 ISO 14,040 系列中定义的阶段顺序相关的方法选择:目标和范围定义、清单分析、影响评估和解释。受良好实践示例的启发,确定了常见的差距和弱点,并得出了比较生命周期评估研究的建议。这包括扩大功能单元定义的建议,在使用输入/输出表的同时提供更详细和透明的 LCI 数据报告。该研究的结果也与《电池指令 2006/66/EC》的修订相关,该指令的第一稿正在欧洲理事会修订中,其中包括引入电池护照,这应鼓励电池生产商减少碳足迹并避免使用有问题的材料。
功率循环测试是研究功率转换器可靠性性能和评估其相对于温度应力的寿命的主要方法之一。在传统的功率循环方法中,结温测量是使用热敏电参数 (TSEP) 进行的,例如低电流下的通态电压(对于双极元件:IGBT 和二极管……)[1] 或 MOSFET 的阈值电压 V 𝑡ℎ [2]。当在 PWM 类型的电气约束下进行功率循环时,这些方法的实现很复杂。测试前还需要对每个组件进行精确校准。本文提出了一种创新的测试台,用于在功率循环期间在线测量结温,以研究嵌入在 PCB 中的功率二极管的可靠性 [3]。所提出的方法基于使用导通期间正向电压 𝑉 𝐹 和正向电流 𝐼 𝐹 的变化来估算热电压 𝑈 𝑇 并从而实时估算结温。这有助于即使在高循环频率(> 1 kHz)的情况下也能获得良好的近似值。表 1 对经典方法和所提出的方法进行了简要比较。首先,给出了该方法的描述,然后介绍了功率循环电路的代表性设计。
在神经系统发育过程中,不同类型的神经元和神经胶质是由自我更新神经干细胞(NSC)依次产生的。NSC中基因表达的时间变化被认为调节神经di versity。但是,调节这些时间基因过渡的时机的机制仍然很少理解。果蝇II型NSC,例如人类外部radial胶质神经胶质,分裂为自我更新并产生中间神经祖细胞,扩大和多样化神经元的群体,该神经元的种群神经支配了中央复合体,这是一种脑部的大脑区域。II型NSC在暂时的十几个基因上表达,广泛地分类为早期和晚期基因。一个保守的基因,通过激活ecdysone受体(ECR)表达,七个UP介导了早期至晚期的压缩。然而,决定了ECR表达的时间,因此,尚不清楚基因转变。这项研究提出了细胞周期进程和细胞因子的固有机制是否需要诱导NSC早期脑结构过渡。通过加入释放NSC细胞周期或阻断细胞因子的突变克隆,我们表明这两个过程对于早期到偏移过渡都是必需的。当NSC是细胞周期或抑制了Cyto kinesis时,早期的基因IMP未能下调并持续到旧的NSC中,而晚期因素ECR和Syncrip未能表达出来。此外,我们表明,早期的七个因素不足以
中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
在虚拟信息发布会上了解有关灭鼠的知识。城市检查服务部和 SomerViva 移民事务办公室邀请社区成员于 1 月 9 日星期四下午 5 点至 6 点通过 Zoom 在线参加关于灭鼠的虚拟研讨会。与会者将了解如何识别您的财产中是否有老鼠、灭鼠方法、预防技巧以及可以提供帮助的城市资源。将提供西班牙语翻译。立即访问 somervillema.gov/rodentsaway 了解更多信息并参加或获取技巧。 **************************** 无法参加城市中期仪式和演讲的社区成员可以通过 CityTV 的 YouTube 频道在线观看,网址为 youtube.com/SomervilleCityTV **************************** 本周祝几位当地人生日快乐:祝 Ka- tie McDaid 生日快乐。我们祝她生日快乐。祝退休高中教师 Marion Joyce 生日快乐。我们希望她能享受这一天。祝伟大的摄影师 Ken Kotch 生日快乐。我们希望他能度过愉快的一天。祝 Phil Forsyth 生日快乐,我们祝他一切顺利。祝伟大的人 Matt Hoey 生日快乐。我们祝他和家人度过愉快的一天。祝 Donna Desrescente 生日快乐。我们祝她一切顺利。我们祝我们所有的 Facebook 朋友,如 Linda M. Alves、Rose Amabile、Chris Walsh、Alberta Healey、Janice Burpee、Paul Nunziato 和 Suzanne Ryan Marks 生日快乐。我们希望每个人都有美好的一天。继续第 7 页
Let's take a visual walk around the figure above and see how the key indicators work. First, notice that when you are piloting your product for innovators in the lower-left quadrant 1, the business is in negative cash flow. The total resources invested in the product to date exceed the return. The market growth rate should be low because it is still defining the problem and the solution for the market. Therefore, the competitors within its defined niche should be few in both number and capabilities. Consequently, the pricing pressure will be high because the business has not fully defined the problem or proven its solution, so it has no real leverage to charge enough money for it at this stage and funding must come from external sources, either investors or proceeds from another business unit).
