本研究涉及通过反流方法的Tulsi Honey掺杂氧化葡萄岩(TH/CEO 2)的便利合成。使用UV-可见,FTIR,TEM和XRD技术对样品进行表征。使用TH/CEO 2在RH-B(Rhodamine b)染料上实施了光催化研究,并在80分钟后显示了95%的降解,在反应的一阶动力学速率和半寿命(t 1/2)周期为42.58分钟。使用镍网状电极在1 M KCL溶液中分析Th掺杂的CEO 2的氧化还原行为,表明电化学特性(例如电容(CSP),扩散系数(D)和可逆性(ER))的氧化还原行为显着改善。使用环状伏安法检测制备的纳米复合材料来检测Hg +2和Pb +2离子的传感器活性。在这里,Hg +2和Pb +2传感器使用准备好的材料展示了更好的传感特性。生成的TH/CEO 2使用2,2-二苯基丙烯酰氢羟基(DPPH)自由基表现出88%的自由基清除活性,IC50值为339.449 mg/ml。
已经提出了许多研究和技术来克服高papr值,它引入了很少的技术来减少可以将三种主要方法分为三种主要方法[1-5]。首先,信号拼凑技术可以分类为选择性映射(SLM),部分发送序列(PTS),选择性代码字偏移(SCS),相互交织,音调保留(TR),音调注入(TI)和主动星座扩展(ACE)。其次,信号失真技术可以归类为剪辑和过滤,限制,峰窗口和信封缩放。第三信号编码技术可以归类为块编码和涡轮编码。过去的研究表明了PAPR的潜力,但他们必须面对一些问题,例如高计算复杂性,降低位错误率(BER)性能(BER)性能,侧面信息,损耗数据速率,带宽,损失频谱效率和失真。在块编码技术中,它可以分为两个,例如算术编码和霍夫曼编码,在将PAPR降低32%的情况下,算术编码更好地比较霍夫曼只有30.6%[6]。剪辑和过滤技术是
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对确定 AM 部件疲劳寿命的方式有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的同质化代表了工程师和材料科学家当前面临的挑战。
肌肉骨骼疾病 (MSD) 在制造业工人中很常见。制造业工人中与 MSD 相关的非中立姿势和高移动速度的暴露可能取决于所执行工作任务的变化程度(即主要是“周期性”与“非周期性”工作)。本研究的目的是 (i) 比较执行以周期性任务为主 (n=18) 和非周期性任务 (n=17) 的制造业工人基于姿势和移动速度的全班暴露汇总指标的平均水平,以及 (ii) 探索工人之间和工人内部暴露差异的模式以及每组内每分钟(班次内)暴露水平和变化。惯性传感器用于测量每个参与者最多 15 个完整班次的暴露。结果表明:(i) 尽管姿势相似,但执行以周期性任务为主的工人的上臂和躯干运动速度明显高于执行非周期性任务的工人;(ii) 非周期性组工人之间和工人内部的暴露差异更大。
(EDLC),其中流行的机制需要在高表面积材料和液体电解质之间的界面处进行非法拉第电荷存储。这些储能装置由于其高功率密度(10 kW kg −1 )、快速响应时间(1 s)、循环寿命(10 5 次循环)和安全性而引人注目。[1] 纳米多孔碳材料通常用于 EDLC。它们的多孔结构充当任何介质的批量缓冲库,从而减少离子对孔内表面的传输阻力。[2] 增加的孔隙可及性可容纳更多阳离子来填充电极的双层,从而产生 200 F g −1 数量级的比电容,就像活性炭的情况一样。 [3] 后者在这些储能装置中被广泛使用,因为它价格低廉,即碳化过程源自木材、煤和坚果壳,与其他多孔材料(如模板碳和碳化物衍生碳)相比,更容易制备。 它的比表面积约为 2000 m 2 g − 1 ,可为标准电池电极提供 ≈ 30 mAh g − 1 V − 1,而标准电池电极为 150 mAh g − 1 V − 1。[4,5]
技术正在迅速发展,在新的方法和材料方面不断突破其极限。在这种情况下,3D(亚)微打印平台尤其令人感兴趣,因为它们可以制备具有高分辨率和任意复杂度的3D微纳米结构。这方面最有前途的技术之一是直接激光写入(DLW),[1,2]这是一种基于双光子聚合反应的增材制造技术,可用于获得高通量[3]和低于100纳米的分辨率的(亚)微米物体和图案。 [4]为实现此目的,DLW利用聚焦的长波长激光飞秒脉冲照射能够在高能辐射下交联的感光树脂。 [5]虽然树脂的吸收率与激光不匹配,但在焦点处,辐射强度足够高,以至于可能发生多光子吸收现象并引发聚合过程(或触发正性光刻胶的分解)。由于抗蚀剂对激光是透明的,因此打印仅发生在焦点周围非常小的体积内(“体素”,即二维“像素”的三维模拟)。通过移动后者,只需一个简单的步骤即可获得复杂的三维架构。由于其灵活性以及易于集成功能材料的可能性,DLW 已在 MEMS、[6] 光子学、[7] 表面改性、[8] 安全系统、[9] 和生物医学研究等领域找到了多种应用。[10,11]
摘要:可逆的氧化物细胞(RSOC)以燃料和化学物质的形式在电能和化学能之间具有有效的环状转化,从而为长期和高容量能量存储提供了途径。在研究中,氢,甲烷和氨的不同燃料中,作为碳中性能量载体引起了极大的关注。在这里,我们比较了基于这三种燃料的能源效率和RSOC的能量需求。在燃料电池运营方式(能源产生)中,甲烷和氨都考虑了两种不同的途径。路线1和2分别涉及内部改革(对于甲烷)或破裂(对于氨)和外部改革或破裂。使用氢作为燃料的使用提供了最高的往返效率(62.1%),其次是甲烷,然后是甲烷,乘以1号公路(43.4%),氨(41.1%)(41.1%),乘以2(40.4%)的甲烷,以及以1(39.2%)为单位的氨(40.4%)。内部氨开裂的较低效率与外部对应物相反,可以归因于最先进的燃料电极材料的催化活性和稳定性,这是该技术规模的主要障碍。初步的成本估算表明,以SOEC模式产生的氢,甲烷和氨的价格分别为〜1.91、3.63和0.48 $/kg。在SOFC模式下,使用氢,内部改良的甲烷和内部破裂的氨的发电成本分别为〜52.34、46.30和47.11 $/MWH。
摘要:本研究量化了使用潮汐流或风力涡轮机的混合系统的技术,经济和环境性能,以及短期电池存储和备用油发电机。该系统旨在部分位于位于英国海峡群岛的奥尔德尼岛上的石油发生器。每天每天提供每天四个发电周期的潮汐涡轮机。这种相对较高的频率循环将油发电机的使用限制为1.6 GWH/年。相比之下,较低的风能时期可以持续数天,迫使风混合动力系统长期依靠备用油发电机,总计2.4 gwh/年(高50%)。因此,假设在此期间,潮汐混合动力系统的燃油量减少了25万英镑/年,或者在25年的运营寿命中取代了640万英镑,则假设此期间的石油成本耗资成本。潮汐和风杂交系统的机油位移分别为78%和67%(与碳排放的减少相同)。对于风混合动力系统,要取代与潮汐混合动力系统相同数量的油,需要另外两个风力涡轮机。电池在高潮汐/风资源时期内存储多余的涡轮能量的能力取决于机会定期排放存储的能量。潮汐混合系统在松弛潮中实现了这一点。高风资资源的时期超过了高潮汐资源的时期,导致电池经常保持充满电,并限制过多的风力。因此,风混合动力系统会减少1.9 GWH/年,而潮汐涡轮机减少了0.2 gwh/年。如果这些利益超过其相对较高的资本和运营支出,那么潮汐型涡轮机减少缩减,燃料成本和碳排放的能力可能会提供在混合系统中实施的案例。
Div> A Department of Chemistry, Faculty of Mathematics and Natural Science, University of North Sumatra, Medan, 20155, North Sumatra, Indonesia B Center of Excellent Chitosan and Advance Materials, University of North Sumatra, 20155, Medan, Indonesia C Department of Pharmacology and Therapeutics, Faculty of Medicine, University Mechanical Engineering, Faculty of Engineering, Mercu Buana University, West Jakarta, Indonesia E伦敦大学学院材料发现研究所,伦敦大学学院,WC1E 7JE,英国f物理学系,数学和自然科学学院,化学工程学院,化学工程,工程学院,麦加塞拉比大学,麦加,麦卡,班达·阿塞23245
本文由 TigerPrints 汽车工程部门免费提供给您,供您免费访问。它已被 TigerPrints 授权管理员接受并纳入出版物。如需更多信息,请联系 kokeefe@clemson.edu。