催化失活的 dCas9 与转录激活因子 (dCas9-VPR) 融合能够激活沉默基因。许多疾病基因都有对应基因,它们具有相似的功能,但在不同的细胞类型中表达。弥补缺陷基因缺失功能的一个有吸引力的选择是通过 dCas9-VPR 转录激活其功能等效的对应基因。这种方法的主要挑战包括 dCas9-VPR 的递送、激活效率、靶基因的长期表达以及体内的不良反应。使用表达分裂 dCas9-VPR 的双腺相关病毒载体,我们展示了在缺乏视紫红质的视网膜色素变性小鼠模型中有效转录激活和长期表达视锥细胞特异性 M-视蛋白 (Opn1mw)。治疗一年后,这种方法改善了视网膜功能,减轻了视网膜变性,没有明显的不良反应。我们的研究表明,dCas9-VPR 介导的功能等同基因的转录激活对于治疗遗传疾病具有巨大潜力。
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
摘要 基于 CRISPR-dCas9 的靶向表观基因组编辑工具可实现对各种基因组修饰的精确操作和功能研究。然而,这些工具通常表现出相当大的上下文依赖性,靶基因和细胞类型之间的功效差异很大,这可能是由于染色质修饰的潜在差异造成的。虽然同时招募多个不同的“效应子”染色质调节剂可以提高功效,但这些系统通常无法控制哪些效应子结合及其空间组织。为了克服这个问题,我们创建了一个新的模块化组合表观基因组编辑平台,称为 SSSavi。该系统充当与 dCas9 融合的可互换和可重新配置的对接平台,可同时招募多达四种不同的效应子,从而可以精确控制和重新配置效应子组成及其结合的空间顺序。我们展示了 SSSavi 系统的活性和特异性,并将其与现有的多效应子靶向系统进行比较,以确定其功效。此外,通过改变效应子募集的空间顺序,在多个靶基因和细胞系中,我们证明了效应子募集顺序对于有效转录调控的重要性。总之,该系统提供了探索效应子共同募集到特定位点的能力,从而可能增强对之前对靶向表观基因组编辑有抵抗力的染色质环境的操纵。
Lowder, L.G.、Zhang, D.、Baltes, N.J.、Paul III, J.W.、Tang, X.、Zheng, X.、Voytas, D. 121
“一种用于研究可变剪接的 CRISPR-dCas13 RNA 编辑工具” Yaiza Núñez-Álvarez 1§*、Tristan Espie--Caullet 1,2,6§、Géraldine Buhagiar 2,6、Ane Rubio-Zulaika 3、Josune Alonso-Marañón 3、Elvira Perez-Luna 2,6、Lorea Blazquez 3-5、Reini F. Luco 1,2,6 * 1. 蒙彼利埃大学人类遗传学研究所,CNRS UMR9002,法国蒙彼利埃。 2. 巴黎萨克雷研究大学居里研究所,CNRS UMR3348,91401 奥赛,法国。 3. 西班牙Biogipuzkoa健康研究所神经科学系,20014圣塞瓦斯蒂安 4. 西班牙巴斯克科学基金会Ikerbasque,48009毕尔巴鄂5. CIBERNED,ISCIII(CIBER,西班牙科学与创新部卡洛斯三世研究所),28031 马德里,西班牙 6. 由抗癌联盟支持的团队。 § 这些作者贡献相同* 通讯作者::ynunez@biotech-foods.com 和 reini.luco@curie.fr 摘要 可变剪接允许从同一基因产生多个转录本,从而使蛋白质库多样化,并在编码基因组有限的情况下获得新的功能。它可以影响多种生物过程,包括疾病。然而,由于在生理背景下剖析每个剪接异构体的精确作用的局限性,其重要性长期以来一直被低估。此外,识别关键调控元件以纠正有害的剪接异构体也同样具有挑战性,这增加了解决可变剪接在细胞生物学中的作用的难度。在这项工作中,我们利用 dCasRx(一种靶向 CRISPR-dCas13 直系同源物的催化无活性 RNA),以经济高效的方式有效地切换内源转录物的可变剪接模式,而不会影响整体基因表达水平。此外,我们展示了 dCasRx 剪接编辑系统的一个新应用,用于识别特定剪接事件的关键调控 RNA 元素。通过这种方法,我们正在扩展 RNA 工具包,以更好地了解可变剪接的调控机制及其在各种生物过程(包括病理状况)中的生理影响。关键词 可变剪接; CRISPR-dCas13,dCasRx;剪接编辑;顺式调节 RNA 元件、RNA 基序。
DNA甲基化是许多生物过程的关键表观遗传机制,其异常调控与人类多种疾病密切相关。精准操控DNA甲基化有望增进我们对这一关键机制的理解,并开发新的治疗方法。此前,我们只能通过小分子(如5-氮杂-2-脱氧胞苷)或无针对性地干扰相关基因(如DNA甲基转移酶)来改变全基因组的DNA甲基化,这使得研究这种表观遗传标记在特定基因组位点的功能意义变得十分困难。通过将DNA去甲基化过程中的关键酶(Ten-eleven易位双加氧酶1,Tet1)的催化结构域与可重编程的序列特异性DNA靶向分子蛋白dCas9融合,我们开发了一种DNA甲基化编辑工具(dCas9-Tet1),可以有针对性地对特定基因组位点进行去甲基化。 dCas9-Tet1 系统使我们能够仅通过替换单个向导 RNA 来研究几乎任何给定位点的 DNA 甲基化作用。本文,我们描述了一种方案,该方案能够使用 dCas9-Tet1 系统高效、特异性地对各种细胞培养物中特定基因组位点的 DNA 甲基化进行模块化和可扩展的操作。
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。
背景:据报道,各种疾病(包括不同的癌症)中都存在异常的 DNA 甲基化模式。CRISPR/Cas9 是一种低成本、高效的基因编辑工具,最近彻底改变了生物技术。研究表明,CRISPR/Cas9 系统可以有效地靶向和纠正甲基化。目的:端粒酶对癌细胞的生存起着重要作用。它由 hTERT 基因编码。本研究评估了 CRISPR/Cas9 靶向 hTERT 治疗胶质瘤癌细胞的有效性。方法:使用携带 sgRNA 和 Cas9 杂交体的 EF1a-hsaCas9-U6-gRNA 载体转染 U87 胶质瘤细胞。研究了 4 和 8 µ g/mL 聚凝胺浓度以提高转染效率。使用实时 PCR 评估经过亚硫酸氢盐修饰的 hTERT 的表达水平。还使用流式细胞术和蛋白质印迹法来确定细胞中是否存在端粒酶。采用高分辨率熔解分析(HRM)检测hTERT启动子的甲基化情况,流式细胞术检测转染U87细胞凋亡率。结果:结果表明,gRNA显著提高了转染效果,4µg/mL聚凝胺和80µg/mL转染后,U87细胞中hTERT的表达与未转染gRNA和基底细胞相比有显著差异,流式细胞术显示转染细胞中hTERT水平降低,转染gRNA后U87细胞凋亡率高于未转染gRNA组。结论:设计的CRISPR/Cas9系统可以降低hTERT表达和端粒酶活性,从而抑制神经胶质瘤细胞生长。
CRISPR/Cas9 介导的转录激活 (CRISPRa) 是研究复杂生物现象的有力工具。尽管基于 VP64 转录激活因子的 CRISPRa 方法已在培养细胞和动物模型中得到广泛研究,并且对体内各种细胞类型和发育阶段表现出极大的通用性,但不同的 dCas9-VP64 版本尚未进行严格比较。在这里,我们比较了相同环境下的不同 dCas9-VP64 构建体(包括所用的细胞系和转染条件)激活内源和外源基因的能力。此外,我们研究了将 VP64 添加到基于 VP64 和 p300 的构建体的最佳方法。我们发现 MS2-MCP 支架 VP64 比直接将 VP64 融合到 dCas9 的 N 端更好地增强了基础 dCas9-VP64 和 dCas9-p300 活性。对于所有测试的靶基因,dCas9-VP64+MCP-VP64 和 dCas9-p300+MCP-VP64 均优于 VP64-dCas9-VP64。此外,使用 dCas9-VP64+MCP-VP64 或 dCas9-p300+MCP-VP64 进行多重 gRNA 表达可显著增强内源基因激活,达到与使用单个 gRNA 的 CRISPRa-SAM 相当的水平。我们的研究结果表明 dCas9-VP64 CRISPRa 系统有所改进,有助于开发多功能、高效的 CRISPRa 平台。