摘要:五十年前,苏苏姆·ohno(Susumu Ohno)提出了著名的C值悖论,该悖论指出,基因组的物理大小,即DNA的量与生物体的复杂性之间没有相关性,并突出了基因组降低的问题。DNA已被描述为“垃圾或selfer dNA”。垃圾DNA的有争议的概念仍然可行。rye是对该概念的正确性和科学意义的另一个测试的便捷主题。栽培黑麦的基因组,塞莱·瓦雷·L。被认为是部落小毛虫的物种中最大的一部分之一,因此它是平均被子植物的基因组及其最接近进化邻居的基因组,例如大麦,荷尔德人,荷尔德人(大约30-35%)和二型麦田(Triticum),triticum,triticum,triticum,triticum,triticum of triticum of triticum,triticum,and triticum of diplitium of triticum,and。审查提供了对黑麦染色体各个区域的结构组织的分析,并描述了有助于其在进化过程中大小增加的分子机制以及这些过程中涉及的DNA序列的类别。是真核基因组冗余概念发展的历史,并讨论了此问题的当前状态。
免责声明 本信息由美国政府机构赞助,作为工作记录而编写。美国政府及其任何机构或其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文研究了三重模块冗余 (TMR) 实现对系统可靠性的影响。为此,对具有 RISC-V 架构的微处理器进行了模拟,分别采用了 TMR 实现和未采用 TMR 实现。在模拟中,注入了单事件瞬变 (SET) 和多事件瞬变 (MET)。此外,还模拟了采用 TMR 实现的晶体管故障。TMR 应用于处理器的 Multi/Div 块,故障将注入这些三重块的输入端。将使用注入故障数与传播故障数之比来比较采用和未采用 TMR 的系统的性能。当系统仅注入 SET 时,不采用 TMR 的系统的比例从 0.058 到 0.389,具体取决于发生 SET 的概率,而采用 TMR 的系统则根本不传播任何故障。如果注入 MET,则不带 TMR 的系统性能会更好,比率在 0.069 和 0.291 之间,而带 TMR 的系统比率在 0 和 0.036 之间。TMR 实施可显著降低错误传播的概率,但如果多事件瞬变击中多条类似的线路,它仍可能失败。为了解决这个问题,应该实施其他形式的冗余。
摘要:重要性测度是识别和评估系统薄弱环节的重要方法,广泛应用于航空、航天、核能等系统的优化设计和维护决策。非相似余度作动系统(DRAS)是实现飞机姿态和飞行轨迹控制的关键飞机控制子系统,其性能和可靠性直接影响飞机的飞行品质和飞行安全。本文分别考虑Birnbaum重要性测度(BIM)和综合重要性测度(IIM)对DRAS中关键部件可靠性变化的影响,首先考虑了性能退化和功率不匹配导致不同部件物理故障特征的差异,然后分析了DRAS中关键部件的可靠性变化。然后通过假设 DRAS 组件的随机退化过程遵循逆高斯 (IG) 过程来估计系统中每个组件的可靠性。最后,使用 BIM 和 IIM 识别系统的薄弱环节,以便在维护期间将资源合理地分配给薄弱环节。所提出的方法可以为人员维护提供技术支持,从而以最小的生命周期成本提高系统可靠性。
摘要 木质素是位于细胞壁的芳香族聚合物,可为木质组织提供强度和疏水性。木质素单体通过苯丙烷途径合成,其中咖啡酰莽草酸酯酶 (CSE) 将咖啡酰莽草酸转化为咖啡酸。在这里,我们探讨了两种 CSE 同源物在杨树 (Populus tremula 9 P. alba) 中的作用。报告系显示 CSE1 和 CSE2 启动子赋予的表达相似。CRISPR-Cas9 产生的 cse1 和 cse2 单突变体具有野生型木质素水平。尽管如此,CSE1 和 CSE2 并非完全冗余,因为两个单突变体都积累了咖啡酰莽草酸。相比之下,cse1 cse2 双突变体的木质素减少了 35%,并导致相关的生长损失。降低木质素含量意味着在糖化程度有限的情况下,纤维素转化为葡萄糖的转化率增加了四倍。双突变体的酚类分析显示,代谢变化很大,除了咖啡酰莽草酸外,还包括对香豆酰、5-羟基阿魏酰、阿魏酰和芥子酰莽草酸的积累。这表明 CSE 具有广泛的底物特异性,这已通过体外酶动力学得到证实。总之,我们的结果表明,在羟基肉桂酰-莽草酸水平上,苯丙烷类途径中存在一条替代途径,并表明 CSE 是改善生物精炼植物的有希望的目标。
InTech Plus 是 ISA 的在线电子通讯,将自动化专业人员与所有自动化事物联系起来。InTech Plus 拥有技术内容、教育培训和视频、行业相关的问答摘录以及最新的行业技术和新闻。InTech Plus 专注于各种主题,例如自动化和控制基础知识、认证、安全、网络安全、物联网、无线设备、人机界面、压力、液位、温度和批次。所有编辑内容均来自各种来源,包括 ISA 书籍、培训课程视频以及来自 ISA 主题专家团队的博客和片段。InTech Plus 由 ISA 首屈一指的自动化内容电子出版商 Automation.com 提供支持。自动化专业人士可以在 www.automation.com/subscribe 订阅 InTech Plus。
摘要:对建筑材料在火灾条件下的行为的评估和解释一直很复杂。在过去的几年中,人工智能 (AI) 已成为解决这一工程问题的可靠方法。本综述总结了现有的应用人工智能预测不同建筑材料(例如混凝土、钢材、木材和复合材料)防火性能的研究。还讨论了利用基于人工智能的模型预测梁、柱、板和连接等一些结构部件的阻燃性。本综述的最后提供了有关开发用于评估建筑材料防火性能及其阻燃性的人工智能技术的优势、现有挑战和建议的见解。本评论为消防工程和材料科学领域的研究人员提供了全面的概述,并鼓励他们探索和考虑在未来的研究项目中使用人工智能。
摘要:化工厂的盈利能力与其可靠性直接相关,可靠性一直是化学工业关注的重点。本文解决空气分离装置概念设计阶段的问题,以尽量减少负收入,其中包括管道供应中断造成的损失以及提高可靠性的成本,包括拥有冗余单元和储罐。提出了一种基于马尔可夫链假设的混合整数线性规划 (MILP) 模型 (表示为 RST),并将其应用于空气分离装置的激励示例。此外,为了解决更大的上层结构,我们提出了一种博弈论算法,该算法将问题分解和重构为各个处理阶段的团队博弈,并在它们之间达到纳什均衡。结果还表明,可以轻松获得接近全局最优的良好初始化点,从而保证纳什均衡解的质量。通过大量示例说明,所提算法能够以比原始 MILP 模型 (RST) 的直接解决方案更短的时间解决全局最优问题。
量子信息处理旨在利用量子物理现象进行数据处理。该领域始于 20 世纪 80 年代初 [ 1 , 2 ],最近在构建可控量子力学系统方面取得的突破引发了该领域的爆炸式增长。构建量子计算机是一项艰巨的挑战,但设计算法同样艰巨,这些算法在量子计算机上运行后,能够利用专家们普遍认为量子计算在某些计算任务上优于传统计算的优势。一项特别引人注目的努力是利用近期的量子计算机,但它的缺点是尺寸有限,并且存在令人衰弱的量子噪声。过去几年,噪声中型量子 (NISQ) 计算机的算法设计领域一直在努力确定计算领域、采用量子信息处理的范例和商业用例,以便从构建可编程量子力学设备的最新进展中获益——尽管目前这些进展可能还很有限 [ 3 ]。人工智能 [ 3 , 4 ] 是近期可能实现量子优势的用例领域。这种希望最有可能出现在生成任务中:理论上已经证明,几种概率分布族允许量子算法从中有效地采样,而没有经典算法能够或已知能够执行该采样任务。玻色子采样可能是这些采样任务中最广为人知的,即使在有噪声的情况下这种优势似乎不会持续(参见 [ 5 ]);在参考文献 [ 6 , 7 ] 中可以找到一些其他采样程序的示例。在可以通过操纵一个或多个参数来迭代改变的量子电路方面也取得了有希望的进展:Du 等人 [ 8 ] 考虑了所谓的参数化量子电路 (PQC),发现它们也在生成任务中产生了理论优势。当强调非线性方面时,PQC 偶尔被称为量子神经网络 (QNN)(例如在 [ 9 ] 中),或称为变分量子电路 [ 10 ]。在本文中,我们坚持使用术语 PQC,但不考虑排除 QNN 或 VQC。
摘要 — 本文在重离子辐照下测试了商用可编程片上系统(PSoC 5,来自赛普拉斯半导体公司),重点测试了系统的模数接口模块。为此,将数据采集系统 (DAS) 编程到被测设备中,并使用设计多样性冗余技术进行保护。该技术通过使用两种不同架构的转换器(一个转换器和两个逐次逼近寄存器 (SAR) 转换器)以不同的采样率运行,实现了不同级别的多样性(架构和时间)。实验在真空室中进行,使用能量为 36 MeV 且足以穿透硅的 16 O 离子束在活性区域产生 5.5 MeV/mg/cm 2 的有效线性能量传输 (LET)。平均通量约为 350 粒子/秒/cm 2,持续 246 分钟。评估了每个转换器对单粒子效应的个体敏感性,以及整个系统截面。结果表明,所提出的技术可有效缓解源自转换器的错误,因为使用分集冗余技术可纠正 100% 的此类错误。结果还表明,系统的处理单元容易挂起,可以使用看门狗技术来缓解。