本文在接受后立即进行了同行审查和发表。这是一篇开放式访问文章,这意味着可以自由下载,打印和分发,
在本文中,我们广泛研究了将纠缠广播为状态相关与状态独立克隆器的问题。我们首先重新概念化状态相关量子克隆机 (SD-QCM) 的概念,在此过程中,我们引入了不同类型的 SD-QCM,即正交和非正交克隆器。我们推导出这些克隆器的保真度将变得独立于输入状态的条件。我们注意到,这种构造允许我们以拥有输入状态的部分信息为代价来最大化克隆保真度。在关于纠缠广播的讨论中,我们以一般的两量子比特状态作为资源开始,然后我们考虑贝尔对角态的一个具体例子。我们在输入资源状态上局部和非局部地应用状态相关和状态独立克隆器(正交和非正交),并根据输入状态参数获得纠缠广播的范围。我们的研究结果突出了状态依赖型克隆器在广播纠缠方面优于状态独立型克隆器的几个例子。我们的研究提供了一个比较视角,即在两个量子比特场景中通过克隆广播纠缠,即当我们对资源集合有所了解时,以及当我们没有此类信息时。
因此,Labidco 不会专注于重工业,而是将重点转向中小型能源服务和制造业,”该公司可持续发展、战略和增长主管 Khadija St Louis 在周三的一次网络采访中表示。Labidco 下个月将迎来成立 30 周年,目前有 27 个租户占用了该地产的 41 个地块,地块大小可满足不同的运营需求。租户从事广泛的业务,包括石油和天然气物流、废物管理、制造、一般建筑和仓储。St Louis 说:“从 21 世纪初开始,Labidco 就成为了许多国家基础设施项目的所在地,包括 NGC 跨岛管道的管道储存,以及最先进的制造厂的开发。”该制造厂更广为人知的名字是特立尼达海上制造公司 (Tofco),该公司因生产国际能源公司使用的世界级平台而闻名。 “建立这个制造厂将增加上游石油和天然气行业的本地含量。你知道,这个工厂的成功证明了该国有能力交付世界级的项目。
USB Type C 连接器带有 5.1k CC 电阻,因此它可以与任何计算机或电源配合使用,以获得 5V 和高达 1A 的独立直流或太阳能输入 - 侧面的两个垫可用于连接 5 ~ 18V 电源,可以代替 USB 使用。如果输入是太阳能电池板,充电芯片将调整电流消耗,使电压不会低于电池电压,从而优化太阳能输入。无需大电容来稳定它,并且您可以获得近 MPPT 功能,而无需 MPPT 的成本和复杂性。默认充电速率为 1A,但您可以切断正面的 IS 跳线并在背面焊接任一跳线以将速率设置为 500mA 或 250mA 所有现代单节 LiPoly 或 LiIon 电池的默认 3.7V 标称/ 4.2V 最大电池化学性质/电压。您可以通过切断正面的 VS 跳线并在背面焊接跳线,将 LiFePO4 电池的电压设置为 3.2V/3.65V 负载电源路径 - 如果在连接 USB/DC/太阳能电源时负载连接器正在吸收电流,则它将默认从充电器吸收电流,任何剩余电流都将流向电池。这样可以防止电池不断充电/放电,从而缩短电池寿命。来自 USB/DC/太阳能的最大吸收量仍然为 1A,如果您需要更多电流,它将来自电池,并且芯片可以提供从电池到负载输出高达 3A 的电流尖峰!受调节的 4.5V 最大负载输出 - 无论 USB 或 DC/太阳能输入端的电压是多少,由于内部电压调节器,负载输出端口都不会超过 4.5V。但是,在处理大电流和高直流电压时请记住这一点,因为 LDO 会使电路板开始过热并限制电流。三个状态 LED - 橙色充电 LED、红色故障 LED 和绿色电源良好 LED。充电/故障引脚也位于左侧分线板上。热敏电阻 - 切断 TH 走线,您可以将 10K 热敏电阻连接到 TH 焊盘,这将调整充电速率以防止电池过热。芯片启用可禁用充电器。安装孔!
孩子们喜欢在户外玩耍和探索。工作人员考虑到了孩子们的兴趣,户外空间有助于孩子们发挥创造力和解决问题。一位工作人员告诉我们:“孩子们一直是改变户外环境的核心,因为我们鼓励他们参与保护环境”。家长们对孩子们每天都有机会在户外玩耍以及这对他们的孩子的好处表示了积极的看法。一位家长评论说:“无论天气如何,我的孩子都有机会在户外玩耍,我们为他提供了防水服以保持身体干燥,我的孩子喜欢户外区域,他说‘就像在公园一样’”。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
MYEG 是马来西亚首屈一指的数字服务公司。MYEG 于 2000 年开始运营,是旗舰电子政务服务提供商,在推动该地区的技术变革方面继续发挥主导作用,带来多样化和完整的创新,涵盖主要政府服务的在线交付以及移民、汽车和金融服务等领域的各种商业产品。MYEG 致力于稳居全球数字革命的前沿,它已经认识到区块链技术改善生活各个方面的潜力,并通过其第 1 层平台 Zetrix 积极引领其在整个地区的应用。此外
