碳纤维(CF)有可能在“结构电池”概念中充当多功能和多功能导电电极。这些电池具有存储电能和携带机械负载的独特能力,而无需额外的电流收集器。但是,在商业化结构电池的道路上仍然存在许多挑战。一个重大的挑战在于基于CF的阴极复合材料的制造过程,包括活性材料对CF表面的粘附不良以及使用危险的有机溶剂,例如N-甲基吡咯酮(NMP)通过传统的叶片涂层。在这项研究中,我们使用电泳沉积(EPD)提出了一种可持续的制造方法,用磷酸锂(LifePo 4)和石墨烯纳米片构建阳性电极复合材料。尤其是乙醇被用作替代NMP的绿色溶剂,以最大程度地减少环境影响。同时,根据系统的比较分析,评估了不同类型的石墨烯添加剂(三种石墨烯纳米片(GNP),四种减少石墨烯(RGO)和一种自制石墨烯)对相对电池性能的影响。在测试的石墨烯添加剂中,基于LFP/RGO2的阳性电极表现出理想的特异性容量为126.2 mAhg -1,即使在2C的苛刻构成下,在500个循环的要求下,也保持了93%以上的保留率。
信息检索是一个不断发展且至关重要的搜索域。对高质量人类运动数据的大量需求,尤其是在在线获取中,导致人类运动研究工作的激增。先前的作品主要集中在双模式学习上,例如文本和运动任务,但是很少探索三模式学习。直觉上,额外的引入方式可以丰富模型的应用程序方案,更重要的是,对额外模式的适当选择也可以充当中介,并增强其他两个不同方式之间的对齐方式。在这项工作中,我们介绍了Lavimo(语言视频 - 动作对齐),这是一个三模式学习的新型框架,将以人为中心的视频整合为一种额外的方式,从而可以在文本和运动之间弥合差距。更重要的是,我们的方法利用了一种专门设计的注意机制来增强文本,视频和运动方式之间的一致性和协同作用。经验,我们对HumanML3D和Kit-ML数据集的结果表明,Lavimo在各种与运动相关的跨模式检索任务中实现了最先进的表现,包括文本到动作,动作到运动,视频,视频到视频,动作和动态。我们的项目网页可以在https://lavimo2023.github.io/lavimo/中找到。
量子热力学的资源理论一直是一个非常成功的理论,并且在社区中产生了很多后续工作。,它要求在系统,浴室和催化剂上实施能源的统一操作,作为其范式的一部分。到目前为止,这种统一的操作被认为是该理论中的“免费”资源。但是,这只是一个不必要过程的理想化。在这里,我们包括一个额外的辅助控制系统,该系统可以通过打开或关闭的交互来自主实现统一。”但是,由于统一的实施而导致的背部。我们得出了控制装置质量的条件,因此热力学定律不会通过使用良好的量子时钟来改变并证明量子力学定律允许反应足够小,从而可以满足这些条件。我们将非理想的控制纳入资源框架也会引起有趣的前景,在考虑理想化的控制时,这是不存在的。除其他外,第三定律的出现而无需假设光锥。我们的结果和框架将自动量热机器的自动量量子资源理论统一,并为所有量子加工设备与完全自主机统一的所有量子处理设备奠定了基础。
细胞周期检查点机制确保细胞周期事件的顺序保留基因组完整性。在其中,当DNA复制被抑制或DNA损坏时,DNA恢复和DNA破坏检查点可防止染色体分离。最近的研究已经确定了这两个对照的调节网络的概述,这些对照显然在所有真核生物中起作用。此外,看来这些检查点有两个逮捕点,一个是在进入有丝分裂之前,另一个是在染色体分离之前。前一点需要中央细胞周期调节剂CDC2激酶,而后者涉及称为促进复合物的泛素连接酶的几个关键调节剂和底物。这些细胞周期调节器与几个键
本文通过利用大型预训练模型来探讨合成数据的潜力,尤其是在面对分布变化时。al-尽管生成模型的最新进展已经阐明了跨分布数据发生的几项先前的作品,但它们需要模型调整和复杂的设置。为了绕过这些缺点,我们介绍了主要的g a a a a a a a a embeddings(doge),这是一个跨分布的插件语义数据augpection框架,几乎没有射击设置。我们的方法以潜在形式提取源和所需数据分布之间的差异,然后引导生成过程,以补充无数多种合成样本的训练集。我们的评估是在几个射击范式下进行亚种群偏移和三个领域适应方案进行的,表明我们的多功能方法改善了各个任务的性能,需要进行动手干预或复杂的调整。Doge铺平了毫不费力地生成遵循测试分布的现实,可转让的合成数据集的道路,从而加强了下游任务模型的现实世界效率。
回复/补充信息提交申请 2022-23 财年校正请愿书、2023-24 财年年度绩效审查 (APR) 以及 2024-25 财年贾坎德邦 DVC 分销活动的总收入要求 (ARR) 和关税的确定
(自主)(隶属于J.N.T.U.A,由AICTE批准并由NAAC认可)Kavali - 524201,S.P.S.R Nellore Dist。,A.P。印度。 PH:08626-243930印度。PH:08626-243930
背景:社交媒体成瘾的抑郁与严重程度之间的关系可能是双向的。尽管如此,目前的研究已经解决了普通人群中量表的抑郁评分,而不是评估重度抑郁症患者的这种关系。尽管确认了社交媒体成瘾与情绪智力的负面关系,但尚未调查这种主要抑郁症中这种关系的存在。因此,我们研究的目的是评估社交媒体成瘾的严重性和主要抑郁症的情绪智力。方法:这项研究是在KARS HARAKANI州立医院精神病学院门诊诊所的158名年龄在18至56岁之间的参与者进行的。社会人口统计学数据表涉及年龄,性别,婚姻状况,教育水平和参与者的就业状况,贝克抑郁量库存,酒吧的情感商清单和社交媒体成瘾量表已实施给参与者。结果:在社交媒体成瘾量表评分方面,创建该小组无上瘾和中等上瘾,可以观察到,中等沉重的群体的情绪智力明显较低,抑郁评分较高(p <.001)。此外,社交媒体成瘾的严重程度与抑郁评分和情绪智力评分有负相关关系(r = 0.353,p <.001; r = - 0.376,p <.001)。结论:主要抑郁症的情绪智力与社交媒体成瘾的抑郁水平和严重程度有关。干预措施,即情绪智能技能培训,对于上述患者可能是实用的。
本研讨会旨在将开拓者和从业人员汇集到研究问题上的研究问题,以讨论其新的范式并寻找路线图,从而促进对新兴研究问题的理解,从而引起广泛的兴趣并以方向向前发展交流见解。我们努力在这个基本主题背后建立一个社区,并提供平台,共享想法,探索共识并创造协作机会。值得一提的是,基础模型的当前数据实践在很大程度上是不透明的1。本研讨会的一个使命是在预处理阶段本身就开源数据工作进行社区努力。随后的努力包括创建数据集,基准(例如MLCommons和Dataperf)以及专门的场所(例如DMLR)来促进基础模型数据问题的研究,并最终促进FMS在社交技术方面的广泛部署,从而为大体而提供受益的型社会技术。