丹尼斯·米斯特拉尔将军 1966 年出生于马赛,是一名圣西里安骑兵军官,属于汤姆·莫雷尔中尉级别(87 – 90 年)。他毕业于圣西尔大学国际关系专业,并拥有伦敦国王学院历史学学位和国防研究硕士学位。 2003年,他在联合三军指挥参谋学院(英国)学习后获得了参谋证书,并于2011年参加了高级军事研究中心第61届会议和国防高级研究中心第64届会议。在索米尔的装甲骑兵训练学校学习一年后,他在谢纳维埃的第三胸甲骑兵团和奥朗日的第一外籍骑兵团担任中尉。正是在这个团里,他指挥了一个作战中队,并在五年后担任了作战训练办公室主任。 2009年,他被任命为卡斯泰尔诺达里第4外籍军团团长。他在部队中轮流担任这些职务,还担任圣马克桑特国家现役士官学校的教员和陆军总参谋部的案件官员。他还曾担任里尔陆军司令部总参谋部的秘书长以及陆军总参谋部的办公室主任。他曾两次作为维和人员被派往前南斯拉夫、克罗地亚和萨拉热窝。他曾两次被派往马约特岛和科特迪瓦共和国,并于 2013 年在“薮猫行动”期间被派往马里。 2014 年至 2015 年期间,他驻扎在乍得,参与了“新月形沙丘行动”,在萨赫勒地区执行任务。 2017年8月1日被任命为准将,指挥驻塞内加尔法国部队和达喀尔防御基地。 2018年8月,他被任命为外籍军团指挥官,这是一支庞大的部队,他于2020年3月晋升为少将,并指挥该部队至2020年8月。2020年8月1日,他担任陆军参谋部空地作战副参谋长。 2023 年 8 月 1 日,他晋升为军团将军,并于当天被任命为里昂军事长官、东南防御与安全区总监兼东南陆区指挥官。陆军军团将军丹尼斯·米斯特拉尔是法国荣誉军团司令和国家功绩勋章获得者。他曾获得过五次军事勇气十字勋章。他已婚,有三个孩子。
摘要引入基于活动的治疗(ABT)是创伤性脊髓损伤(SCI)后康复的重要方面。不幸的是,尽管有令人信服的临床前证明,它从未适应过急性护理,表明它在SCI之后的几天内开始促进神经系统恢复是安全有效的。本文提供了一项研究的方案,该方案将确定可行性并探索早期ABT的潜在益处,以SCI脊柱手术结束后48小时内引发的床内腿骑自行车的形式。方法和分析提示SCI(创伤性SCI患者的动员快速发作的方案)是一项单位单臂概念验证试验。将包括从C0到L2,在受伤后的48小时内接受脊柱手术的45岁患者(美国脊柱损伤协会损伤量A,B或C级)。参与者将连续每天连续30分钟连续14天,在脊柱手术结束后的48小时内开始。可行性结果是:(1)缺乏与骑自行车相关的严重不良事件,(2)在90%的参与者的48小时内完成1次完整会议,以及(3)80%的参与者完成11次会议。患者结局将在受伤后6周零6个月,使用神经功能评估,生活质量问卷和住院时间长度来衡量。可行性和患者结果将通过描述性统计数据进行分析。招聘始于2021年4月。患者的结果也将与匹配的历史队列进行比较,该队列尚未使用McNemar和Student t-Tests进行二进制和连续成果进行床内骑行。伦理和传播提示SCI得到了Ciusss Nim的研究伦理委员会的批准。传播策略包括在会议上的科学期刊和演讲中的出版物。试用注册号NCT04699474。
摘要:铜及其合金的电源产品的使用寿命增加与材料耐磨性的抗酸盐直接相关。结构性抑制和与镉合金的合金对铜的强度特性和耐耐磨性具有积极影响,这使得它的CD含量为1%,以增加铜的耐磨性几次,但镉被认为是一种环境不安全元素。在这方面,本文介绍了在超铁颗粒(UFG)状态中广泛使用的CU-CR-ZR合金系统的研究结果,该状态与镉(0.2%,重量)微合成,以改善物理,机械,机械和操作特性,以及环境安全。严重的塑性变形,可供应结构的细化至〜150 nm,以及与Cu-Cr-ZR系统合金的镉微合成,在完整的处理周期后,可提供570±10 MPa的拉伸强度和67%的电导率。同时,相对于工业系统Cu-CD和Cu-Cr-ZR,Abra-Sion抗性分别增加了12%和35%。在强烈磨损条件下运行的连续焊接尖端,集合板和接触线的连续焊接尖端,集合板和接触线非常有前途。
认可:(名称,机构,电子邮件)Ali Arniio,北卡罗来纳大学格林斯伯勒大学,anarnio@uncg.edu Olivier Absil,Li`Eege大学,Oliiege。 n.anugu@exexer.ac.ac.uk elyn baines, naval research lab, elyn.baines@nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.nrl.navy.Grenoble Alpes,Ipag,Jean-Philippe.berger@univ-grenoble-alpes.fr L. Ilsedore Cleeves,弗吉尼亚大学,lic3f@virginia.edu daniel daniel daniel dale,U.Wyoming飞行中心,William.C.Danchi@nasa.gov W.J.dev wit,eeso,eeso,wdewit@eso.org denis deNis deNis deNis defr`,li` eege,ddefefefre@uliege.be swn domagal-goldman,nasa-gsfc,smithsonian,cfa Harvard&Smithsonian,melvis@cfa.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.edu dirk dirk dirk dirk dirk Froebrich,肯特大学,df@star.kent.ac.ac.uk Mario Gai,Istuto Nazionole di Astrofisca,Mario.it posit Pose pose pose Gandhi,Poshak.gandhi and poshak.gandhi@sonon.ac.ac.uk paulo paulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo garcia Porto,葡萄牙,pgarcia@fe.up.pt Tyler Gardner,密歇根大学,tgardne@ummich.edu douglas gies,佐治亚州立大学,gees@chara.gsu。 Jean-francois.gonzalez@ens-lyon.fr Brian Gunter,乔治亚理工学院,brian.gunter@aerospace.edu sebastian hoenig,英国南安普敦大学,s.hoenig@song@sonn.ac。澳大利亚国立大学,Michael.ireland.ireland@anu.au Anders Jorgensen,新墨西哥矿业与技术研究所,Anders.m.Jorgensen@nmt.edu Makoto Kishimoto,京都Sangyo Sangyo大学,日本,日本dev wit,eeso,eeso,wdewit@eso.org denis deNis deNis deNis defr`,li` eege,ddefefefre@uliege.be swn domagal-goldman,nasa-gsfc,smithsonian,cfa Harvard&Smithsonian,melvis@cfa.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.harvd.edu dirk dirk dirk dirk dirk Froebrich,肯特大学,df@star.kent.ac.ac.uk Mario Gai,Istuto Nazionole di Astrofisca,Mario.it posit Pose pose pose Gandhi,Poshak.gandhi and poshak.gandhi@sonon.ac.ac.uk paulo paulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo gaulo garcia Porto,葡萄牙,pgarcia@fe.up.pt Tyler Gardner,密歇根大学,tgardne@ummich.edu douglas gies,佐治亚州立大学,gees@chara.gsu。 Jean-francois.gonzalez@ens-lyon.fr Brian Gunter,乔治亚理工学院,brian.gunter@aerospace.edu sebastian hoenig,英国南安普敦大学,s.hoenig@song@sonn.ac。澳大利亚国立大学,Michael.ireland.ireland@anu.au Anders Jorgensen,新墨西哥矿业与技术研究所,Anders.m.Jorgensen@nmt.edu Makoto Kishimoto,京都Sangyo Sangyo大学,日本,日本
在这种不断提高我们的绩效的追求中,我们通过该研究所的临床过度分析了研究轴的研究模型。由丹尼斯·理查德(Denis Richard)博士设计的该模型仍然是一个例子,以促进研究活动的繁殖和整合,以满足研究所所服务的人群的新兴需求。不幸的是,过去一年也以D R Richard的去世为标志,我们欠了很多。denis完美体现了大型领导者的定义。总是听他周围的人,他知道如何掌握人际关系的微妙之处,以制定和制定共同利益的计划。丹尼斯(Div> Denis)深深地影响了许多影响当今研究世界及其他人的人。我们表达了我们最深刻的认可,并感谢丹尼斯对研究中心的增长和影响的宝贵贡献。
进入劳动力市场的年轻人受教育程度更高,抱负也更大,但在许多国家,他们仍然很难找到好的工作(Mann、Denis 和 Percy,2020 年 [1] )。社会开始采用职业指导系统,帮助学生更好地设想、规划和实现自己的职业抱负,使他们能够更好地积累和激活劳动力市场的知识和技能。对定量数据的审查表明,各国这样做是正确的。参与职业发展形式的年轻人,特别是与他们如何探索、体验和思考未来相关的年轻人,通常比没有参与的同龄人更能享受进入劳动力市场的过渡(Covacevich 等人,2021 年 [2];Mann、Denis 和 Percy,2020 年 [1] )。
• Aiaze Mitha,联合国资本开发基金会;联合国可持续发展目标数字融资工作组 • Jayideep Akkireddy,IDH 可持续贸易倡议 • Linda Busienei,Agri-wallet • Denis Moniotte,Rubyx
Kathrin Ohla 1,2,3, †, Maria G. Veldhuizen 4, †, Tomer Green 5, Mackenzie E. Hannum 6, Alyssa J. Bakke 3, Shima T. Moein 7, Arnaud Tognetti 8, Elbrich M. Postma 9, Robert Pellegrino 6, Daniel Liang-Dar Hwang 10, Javier Albayay 11, Sachiko Koyama 12,Alissa A. Nolden 13,Thierry Thomas-Danguin 14,Carla Mucignat-Caretta 15,Nick S. Menger 16,Ilja Croijmans 17,LinaÖztürk4,HüseyinYanık4,HüseyinYanık4,Denis Pierron 18,Denis Pierron 18,Veronica Perecaia nune nune nune nune nune nune nune nune nune nunez-pine nune nune nune nunez-pine, 19,David Gillespie 21,Michael C. Farruggia 22,Cinzia Cecchetto 15,Marco A. Fornazieri 23,Carl Philpott 24,Vera Voznessensnkaya 25,Keiland W. Cooper W. Cooper 26,Paloma Rohlfs Dominguez 27 Elisabeth M. Weir 3,Dear Exten 3,Paule V. Joseph 31,Valentina Parma 6,John E. Hayes 3#,Masha Y. Niv 5#Kathrin Ohla 1,2,3, †, Maria G. Veldhuizen 4, †, Tomer Green 5, Mackenzie E. Hannum 6, Alyssa J. Bakke 3, Shima T. Moein 7, Arnaud Tognetti 8, Elbrich M. Postma 9, Robert Pellegrino 6, Daniel Liang-Dar Hwang 10, Javier Albayay 11, Sachiko Koyama 12,Alissa A. Nolden 13,Thierry Thomas-Danguin 14,Carla Mucignat-Caretta 15,Nick S. Menger 16,Ilja Croijmans 17,LinaÖztürk4,HüseyinYanık4,HüseyinYanık4,Denis Pierron 18,Denis Pierron 18,Veronica Perecaia nune nune nune nune nune nune nune nune nune nunez-pine nune nune nune nunez-pine, 19,David Gillespie 21,Michael C. Farruggia 22,Cinzia Cecchetto 15,Marco A. Fornazieri 23,Carl Philpott 24,Vera Voznessensnkaya 25,Keiland W. Cooper W. Cooper 26,Paloma Rohlfs Dominguez 27 Elisabeth M. Weir 3,Dear Exten 3,Paule V. Joseph 31,Valentina Parma 6,John E. Hayes 3#,Masha Y. Niv 5#
Denis De Crombrughhe 哈萨克斯坦政治经济学 David Karpa 德国不来梅 博士 哈萨克斯坦的国家监控和自我审查 主席:Dinara Pisareva (NU) Julia Schwab 苏格兰格拉斯哥 讲师 哈萨克斯坦政权框架策略和 Kashagan
在翻译器官片平台上的气体控制(顶部):开发用于精密医学的ERIC Safai微芯片模型T-061 ERIC SAFAI微型胰腺癌模型T-062 Sophia Co \ Y独立式倾向示威者系统,用于实现自动细胞培养物的t-063 frreke inicimation t-rimcromimincrip ciciCAIMCORCORIMCORCORICTAIME (microEIT) for Real-Time Imaging of Biological Samples on Chip T-064 Chang Liu Training the Next Generation of Researchers in the Organ-on-Chip Field T-065 Silke Riegger Monitoring Neurosphere electrophysiological activity using a novel NeuroMPS with integrated micro electrodes T-066 Fulya Ersoy Formation of Matrigel Beads by Centrifugal Force for Organoid Growth T-067 Frederic Bottausci Microfluidic system for simultaneous culture of a two 3D models: pancreatic islet and a blood vessel T-068 Patrycja Baranowska Microfluidic device for EIS and optical monitoring of cells T-069 Lilia Bató Raman microspectroscopy for organ-on-chip applications: non-destructive analysis of intestinal epithelium functions T-070 Alessandra Calogiuri微型图案肝癌,用于研究Hering T-071 Denis denis Estrade可生物降解的可生物降解的辅助1D和2D肌肉细胞机械刺激器中有机体机械刺激的动量器 T-073 Jéssica Rodrigues de Paula Albuquerque Testicular Organ-On-Chip: a New Platform for Drug Testing and Spermatogonial Stem Cells Functional Studies T-074 Denis Pehlic Characterization Of 3d-Printed Device Providing Strain For Cortical Brain Organoids During Maturation T-075 Samah Abousharieha Human intestinal enteroids: the gateway to novel antivirals targeting enteric病毒和宿主免疫反应。在翻译器官片平台上的气体控制(顶部):开发用于精密医学的ERIC Safai微芯片模型T-061 ERIC SAFAI微型胰腺癌模型T-062 Sophia Co \ Y独立式倾向示威者系统,用于实现自动细胞培养物的t-063 frreke inicimation t-rimcromimincrip ciciCAIMCORCORIMCORCORICTAIME (microEIT) for Real-Time Imaging of Biological Samples on Chip T-064 Chang Liu Training the Next Generation of Researchers in the Organ-on-Chip Field T-065 Silke Riegger Monitoring Neurosphere electrophysiological activity using a novel NeuroMPS with integrated micro electrodes T-066 Fulya Ersoy Formation of Matrigel Beads by Centrifugal Force for Organoid Growth T-067 Frederic Bottausci Microfluidic system for simultaneous culture of a two 3D models: pancreatic islet and a blood vessel T-068 Patrycja Baranowska Microfluidic device for EIS and optical monitoring of cells T-069 Lilia Bató Raman microspectroscopy for organ-on-chip applications: non-destructive analysis of intestinal epithelium functions T-070 Alessandra Calogiuri微型图案肝癌,用于研究Hering T-071 Denis denis Estrade可生物降解的可生物降解的辅助1D和2D肌肉细胞机械刺激器中有机体机械刺激的动量器 T-073 Jéssica Rodrigues de Paula Albuquerque Testicular Organ-On-Chip: a New Platform for Drug Testing and Spermatogonial Stem Cells Functional Studies T-074 Denis Pehlic Characterization Of 3d-Printed Device Providing Strain For Cortical Brain Organoids During Maturation T-075 Samah Abousharieha Human intestinal enteroids: the gateway to novel antivirals targeting enteric病毒和宿主免疫反应。T-076 JANA VAN DYCKE在考虑FCRN回收途径T-077 Anne-katrin be Intestine-on-Chip模型中,用于抗体验证的微生物生理学模型,以改善易Immantical Intesinal Physentiip t-078 Rut-lopeun-rut-rut-in-rut-lopemoct toa-in-chip模型基于微生物组的疗法使用中吞吐量微流体设备