PH-UY 2344 现代和固体物理学导论 (4 学分) 通常在春季提供 狭义相对论、迈克尔逊莫雷实验。普朗克量子假设、光电效应、康普顿效应、卢瑟福散射、玻尔原子、德布罗意波长、电子衍射、波函数、不确定性原理、薛定谔方程。应用于:方阱势、单电子原子。原子核、裂变和聚变。周期性晶格中的能带、Kronig Penney 模型、价带、导带、杂质态、电子迁移率。半导体特性。超导简介;电子对、能隙、约瑟夫森效应。| 先决条件:PH-UY 2023;共同要求:PH-UY 2033 和 MA-UY 2034。评分:Ugrd Tandon 评分可重复获得额外学分:否
波粒二元论DeBroglie假设(衍生和不同形式的波长)物质波及其特性(相位速度波数据包,群体速度和物质波的群体和特性)HeisenbergHeisenberg的不确定性原理(陈述和说明)和不确定性的prince crordiationprinc prind criventerprinc print crive of prinction Function and Time Independent Schrödinger Wave Equation (Meaning of wave function and differential wave equation for matter in 1-dimention Physical significance of Wave Function: Physical Interpretation (Probability density and normalization) Expectation Value in quantum mechanics (Definition and example) Eigen values and eigen functions (Meaning and conditions for Eigen functions) Applications of schrödinger wave equation: Particle in one-dimensional potential well of infinite height (Applying Schrodinger wave equation and boundary conditions for particle and discussion of Eigen values and Eigen functions) Wave functions and the probability densities for the first three values of for a particle in a box (Using Eigen function, for n=1, 2, and 3, probability density and discussion about the wave nodes) Numerical Problems: Problems on de-Broglie hypothesis, uncertainty principle, expectation value, Eigen value and特征功能预期模型问题:预期问题和上学期结束考试问题。