嵌合抗原受体T细胞疗法(CAR-T细胞疗法)是一种免疫疗法,也可以称为收养T细胞疗法,试图对患者进行自身识别和攻击癌细胞的免疫系统进行编程。本疗法的第一步是通过格言从患者那里清除T细胞,该过程可去除体内的血液并去除一种或多种血液成分(例如白细胞,血浆或血小板)。然后将剩余的血液返回到体内。随后将T细胞发送到药物制造设施或实验室,在那里它们进行了基因设计,以在其表面产生嵌合抗原受体(CAR)。这些CAR-TS是允许T细胞识别靶向肿瘤细胞上的抗原的方法。在实验室中生长了基因修饰的T细胞,直到有足够的(数百万)冻结并返回患者的中心。在那里,他们注入了受体,期望汽车T细胞将识别并杀死具有靶向抗原表面的癌细胞。由于在输注后很长时间可能会保留CAR-T细胞在体内,因此治疗可能会带来长期缓解。CAR-T细胞疗法可用于治疗某些血液学恶性肿瘤,当时疾病复发或难治性地治疗标准线。rems计划:ABECMA仅通过风险评估和缓解策略(REMS)的限制计划可用,称为Abecma REMS计划。食品药物管理局(FDA)批准的指示:•ABECMA(IDECABTAGENE速度)用于治疗两种或多个先前治疗后的复发或难治性多发性骨髓瘤的成年患者,包括免疫调节剂,一种蛋白酶体抑制剂,一种蛋白酶体抑制剂,抗CD38 Monoclonal抗体。a rems是一项药物安全计划,可管理与药物相关的已知或潜在风险,美国(美国)食品和药物管理局(FDA)要求确保药物的益处大于其风险。ABECMA仅在ABECMA REMS计划下可用,因为细胞因子释放综合征(CRS)和神经毒性的严重风险。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
摘要 全球交通运输二氧化碳排放量增加,尤其是在疫情后,加剧了航空等行业脱碳的紧迫性,航空业占人为二氧化碳排放量的 3% 左右。本研究回顾了电动汽车 (EV) 在加纳航空业应用的变革潜力,特别关注地面运营。通过利用与全球可持续能源战略相一致的加纳国家电动汽车政策,本文研究了该国在推进航空脱碳工作方面的独特地位。该研究借鉴了全球案例研究,评估了将电动汽车技术融入航空业的可行性和好处,并将加纳丰富的锂资源作为战略资产。本文提出了有针对性的政策和基础设施建设,作为使加纳航空业与国际脱碳目标保持一致的途径。这项研究的新颖之处在于它全面分析了电动汽车政策与撒哈拉以南非洲航空脱碳之间的交集,这可以使加纳成为这一转型的领导者。关键词:电动汽车、航空脱碳、可持续交通、电动航空技术
人工智能 (AI) 技术继续革新各个领域,包括将其融入教育,特别是在 K-12 科学教育中,这显然具有重要意义。本文介绍了一项文献计量分析和系统评价,研究了人工智能技术在 K-12 科学教育中的融入。共分析了 20 项研究,包括 2013 年至 2023 年期间发表的期刊文章和会议论文集,这些研究来源于 Scopus 数据库,以确定领先的期刊、有影响力的论文和作者以及按县分类的贡献。研究表明,人工智能技术,包括机器人技术、聊天机器人、机器学习、自动评分 - 反馈和神经网络,明显提高了学习成果,提高了学生参与度,并促进了科学课堂的个性化教育。此外,该评论还确定了多种方法论和教学策略,包括实践学习、混合学习模式、基于探究的方法和基于反馈的学习,作为将人工智能融入科学课堂的实用手段。此外,主要发现强调了专业发展、基础设施投资和道德准则的重要性,以支持在科学教育中公平实施人工智能。这项研究还提倡未来的研究调查长期影响、道德考虑和定性见解,以充分了解人工智能在增强 K-12 科学教育方面的潜力。
特征在2050年欧洲能源系统的技术经济模型旨在通过优化资源消耗和技术安装的配置来有效地满足最终用途需求。需求包括四个部门:家庭(住宅建筑),服务(商业建筑),运输和工业。为了解决需求和可再生能源产生的波动,使用了一个每月平均时间序列,可以平衡时间分辨率与计算效率。该模型通过生命周期评估(LCA)方法结合了排放,不仅考虑了技术的运行,还考虑了其构建和资源的提取。对于每个行业,根据文献中的脱碳化选项来确定生产路线,并考虑到能源需求,有效性,效率和投资要求。现有的生产路线也包括在模型中作为参考案例,为将过渡到替代性脱碳途径的过渡提供了基础。
电动汽车解决方案销售主管 Fredrik Tjernström 和 Heidelberg Materials 采石场主管 Marie Apelgren 在舍夫德。 • 自 2023 年与沃尔沃集团签署谅解备忘录 (MoU) 以来,两家公司一直在合作探索并已在 Heidelberg Materials 的北欧业务中引入了用于装载和运输活动的电动解决方案。 • 在完成广泛的现场研究后,随着联合路线图的制定,合作现已进入新阶段。 • 该协议支持这家领先的建筑材料公司通过切实行动实现其零排放路线图,并随着时间的推移适应不断发展的技术以及生产力和可持续性目标。 由两个组织的跨职能专家组成的项目团队分析了海德堡在挪威布雷维克、哥得兰岛斯莱特、舍夫德和瑞典布罗等主要工厂的运营情况。 该研究使用先进的数字工具,检查了燃料消耗、物料移动、自行车路线、机器类型和操作员行为等因素。基于这些见解,并在沃尔沃建筑设备解决方案销售团队的指导下,该团队提出了切实可行的建议,以减少排放,同时支持生产率目标。规划前进的道路
近年来,碳捕获、利用和储存 (CCUS) 已被确定为清洁能源解决方案错综复杂的难题中的关键脱碳杠杆。这包括基于技术的二氧化碳去除 (CDR),例如带 CCUS 的生物能源 (BECCUS) 和带储存的直接空气捕获 (DACS)。要将全球变暖限制在 1.5 摄氏度 (°C),需要在 2023 年至 2050 年之间减少二氧化碳 (CO₂),方法是将年排放量从 2022 年的水平减少约 34 千兆吨 (Gt),累计碳去除量约为 500 Gt (IRENA,2023)。CCUS 在世界上最受认可的国际组织的方案中发挥着作用,例如国际可再生能源机构 (IRENA)、国际能源署 (IEA) 和政府间气候变化专门委员会 (IPCC)。根据 IRENA 的 1.5°C 情景,预计到 2050 年 CCUS(包括 BECCUS 和 DACS)将贡献 109 Gt 的累计二氧化碳去除量。
1)脱碳需要建立全新的价值链。这是具有挑战性的,因为必须并行计划,构建和委托相互依存的资产。价值链中参与者之间的高度相互依存性可以防止单个资产获得收入,直到整个资产链达到COD 1为止。因此,如果延迟,玩家可能会面临严重的损失和经济处罚。一个很好的例子是丹麦氢价值链,在新的RE产生,电解器和氢骨架上具有相互依赖性。同样,CCUS市场需要协调建立新的价值链。
可变可再生能源(VRE)有望成为实现范围内经济气候变化目标的基石。但是,尽管运输电气化正在推动公路车辆的发展,但对于长途航空航空仍然具有挑战性。在这个难以蓄积的部门中,政策和研究重点是生产与现有飞机技术兼容的液化燃料。尽管目前,替代喷气燃料市场以生物燃料为主,但多样化的燃料生产途径对于弹性的未来至关重要。新兴的基于电力的合成喷气燃料为商业化提供了有希望的新路线。尽管通过电解可持续航空燃料(E-SAF)和常规化石喷气燃料之间的成本比率提出了采用障碍,但涉及综合动力系统观点的技术经济评估表明,潜在的协同效应既可以降低E-SAF的生产成本,又可以使电力领域的能源部门朝着基于恢复电源的动力生成系统。大型VRE容量需要灵活的需求管理,而E-Fuel Electreolizer等可中断的技术可能在网格平衡和成本
尽管接受了抗逆转录病毒疗法 (ART),HIV 仍会在潜伏感染细胞(HIV 病毒库)中持续存在,这些细胞会随着时间的推移而缓慢衰减。在这里,我们利用 67 名在急性感染期间接受治疗的 HIV 感染者 (PLWH) 的 500 多个长期样本,开发了一个数学模型来预测外周 CD4 + T 细胞的病毒库衰减。非线性广义加性模型显示完整 DNA 的快速双相衰减(第 0-5 周:t 1/2 ~ 2.83 周;第 5-24 周:t 1/2 ~ 15.4 周),延长至 1 年。这些估计值比之前接受慢性治疗的 PLWH 的衰减估计值快约 5 倍。缺陷 DNA 具有相似的双相模式,但数据变化更大。对于 PLWH,预测的完整和缺陷衰减速度更快,ART 启动时间较早、初始 CD4 + T 细胞计数较高和 ART 前病毒载量较低。在这项研究中,我们加深了对 ART 启动时 HIV 病毒库衰变的有限理解,为针对这一关键时期的未来治疗策略提供了信息。
