摘要:提出了一种泵送式热能存储系统的模型。它基于布雷顿循环,依次作为热泵和热机工作。考虑了实际工厂中预期的所有主要不可逆性来源:工作流体和热库之间的热传递引起的外部损失、压力衰减引起的内部损失以及涡轮机械中的损失。数值分析考虑的温度适用于固体热库,例如填料床。特别强调了导致物理上可接受的配置的参数和变量的组合。获得并分析了效率的最大值,包括往返效率,并提供了最佳设计间隔。预测往返效率约为 0.4,甚至更大。分析表明,耦合系统可以运行的物理区域在很大程度上取决于不可逆性参数。这样,功率输出、效率、往返效率和泵送热量的最大值可能位于物理区域之外。在这种情况下,考虑上限值。这些最大值的敏感性分析表明,膨胀机/涡轮机的变化和压缩机的效率对选定的设计点影响最大。对于膨胀机来说,这些下降主要是由于物理操作区域面积的减小。
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
DNA碱基损伤是致癌突变和基因表达中断的主要来源。RNA聚合酶II(RNAP)在DNA损伤部位的失速和随后的修复过程触发在塑造基因组 - 突变的广泛分布,清除转录障碍以及最小化错误编码的基因产物的过程中具有重要作用。尽管对遗传完整性的重要性很重要,但这种转录耦合修复(TCR)过程的关键机理特征是限制或未知的。在这里,我们利用了一个井中的体内哺乳动物模型系统,以探索TCR的机械性能和参数,以良好的空间分辨率以及损坏的DNA链的区分,以烷基化损伤。为了进行严格的解释,开发了DNA损伤和TCR的可推广数学模型。将实验数据拟合到模型,模拟表明RNA聚合酶经常绕过不触发修复的病变,表明小烷基化加合物不太可能是基因表达的有效障碍。损害爆发后,转录 - 耦合修复的效率逐渐通过基因体衰减,对癌症驱动器突变的发生和准确推断的影响。重新修复修复位点的转录不是转录的一般特征 - 耦合修复,并且观察到的数据与重新定期永远不会发生。共同揭示了TCR的方向性但随机活性如何塑造DNA损伤后突变的分布。
i SS U E D:12/01/2024当前的ElNiño-Southern振荡(ENSO)状态:ElNiño事件持续存在。气候模型前景表明,厄尔尼诺现象处于或接近其峰值,该事件可能会在未来几个月内变弱,在2024年秋季返回中性。ENSO展望将保持厄尔尼诺现状,直到此事件衰减,或者出现可能出现LaNiña的迹象。厄尔尼诺现象通常导致Rarotonga和南部库克群岛的降雨量减少。对于Penrhyn和北部库克群岛来说,相反的情况是,通常降雨量的数量超过了正常的降雨量。也预计还会有温暖的日子。库克群岛的气象服务以及区域气候伙伴将继续密切监视热带太平洋的条件以及进一步发展的模型前景。地位摘要:12月,北部库克群岛没有观察到极端。在3个月和6个月的时间尺度上观察到曼尼基的湿条件,但在12个月的时间表上观察到北部库克群岛(Penrhyn,Rakahanga,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Pukapuka,Nassau和Suwarrow)的干燥条件。是南部库克群岛(Aituaki,Atiu,Mangaia,Mauke,Mitiaro和Palmerston)的12月,它继续进行了3 - 6个月的时间。在12个月的时间尺度上没有观察到极端。Outlook摘要:
该药品需要接受额外监测。这将可以快速识别新的安全信息。请医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参见 4.8 节。 1. 药品名称 Pluvicto 1 000 MBq/mL 注射/输注溶液 2. 定性和定量组成 在校准日期和时间,1 mL 溶液含有 1 000 MBq 镥 (177 Lu) vipivotide tetraxetan。在给药日期和时间,每个单剂量小瓶的总放射性活度为 7 400 MBq ± 10%。鉴于校准日期和时间的固定体积活度为 1 000 MBq/mL,小瓶中溶液的体积范围可为 7.5 mL 至 12.5 mL,以在给药日期和时间提供所需的放射性活度。物理特性 镥-177 衰变为稳定的铪-177,物理半衰期为 6.647 天,衰变过程中会发射最大能量为 0.498 MeV(79%)的β-射线以及 0.208 MeV(11%)和 0.113 MeV(6.4%)的光子辐射(γ)。 已知作用的辅料 每毫升溶液含最多 0.312 mmol(7.1 毫克)的钠。每瓶最多含 88.75 毫克钠。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 注射/输注溶液。澄清、无色至微黄色溶液,pH 值:4.5 至 7.0。
摘要 我们研究了量子纠错对相干噪声的有效性。相干误差(例如,单位噪声)可以相互干扰,因此在某些情况下,受相干误差影响的量子电路的平均不保真度可能会随着电路大小的增加而二次增加;相反,当误差不相干(例如,去极化噪声)时,平均不保真度在最坏的情况下会随着电路大小线性增加。我们考虑了量子稳定器代码对噪声模型的性能,在该模型中,对每个量子位应用单位旋转,其中所有量子位的旋转轴和旋转角度几乎相同。特别是,我们表明,对于受这种独立相干噪声影响的环面代码和最小权重解码,只要噪声强度与代码距离成反比衰减,纠错后的逻辑通道会随着代码长度的增加而变得越来越不相干。对于弱相关相干噪声,也有类似的结论。我们的方法还可用于分析其他代码和容错协议对相干噪声的性能。然而,我们的结果并未表明,在噪声强度随代码块增长而保持不变的更物理相关情况下,逻辑通道的相干性会受到抑制,并且我们重述了阻止我们将结果扩展到这种情况的困难。尽管如此,我们的工作支持了容错量子计算方案将有效对抗相干噪声的想法,为担心控制误差和与环境的相干相互作用的破坏性影响的量子硬件制造商提供了令人鼓舞的消息。
资格标准标准在太阳能电池的高耐力和弹性上。在这些Stan dard中,例如欧洲ECSS-E-ST-20-08C或美国AIAA S-111A对应物,包括与高温加速测试有关的生命测试(包括其他许多)。There are several issues that make it difficult to assess the multijunction solar cell life from temperature tests in these standards.例如,在欧洲标准中,假定为硅设备确定的0.7 eV的活化能。另一方面,美国标准在50℃,80℃和110℃的温度下提出了温度加速测试,显然很低,可以真正加速太阳能电池的寿命测试。因此,在本文中,我们介绍了由Inno vative温度ALT得出的结果可靠性数字(可靠性函数,失效概率和MTTF),该温度允许适当估计商业晶格的激活能量匹配的Gainp/ga(IN)AS/GE Triple Juniple -Junife Junction太阳能电池。主要结论是:a)估计活化能为0.97 eV。此值导致测试细胞的寿命值明显更高。b)从Weibull失败密度函数β获得的形状参数为1.67; c)测试的太阳能电池在80°C - 130℃的温度范围内表现出强大的设备,表现出高可靠性值; d)对于较高的温度,尤其是150℃以上的温度,可靠性显着衰减; f)可以在任何操作温度和故障标准中评估可靠性函数和参数。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
摘要:报告了在 2016–2018 年 CERN LHC 的 CMS 实验记录的质子-质子碰撞数据中寻找重共振和衰变成 e µ 、e τ 和 µτ 终态的量子黑洞,这些数据是在√ s = 13 TeV 时记录的,对应的积分光度为 138 fb − 1 。重建了 e µ 、e τ 和 µτ 不变质量谱,未发现超出标准模型的物理证据。对于轻子味违反信号,截面与分支分数乘积的上限设定为 95% 的置信水平。研究了三个基准信号:R 宇称违反超对称模型中的共振 τ 中微子产生、具有轻子味违反衰变的重 Z ′ 规范玻色子以及具有额外空间维度的模型中的非共振量子黑洞产生。共振 τ 中微子在 e µ 通道中质量不超过 4.2TeV,在 e τ 通道中质量不超过 3.7TeV,在 µτ 通道中质量不超过 3.6TeV 时被排除。具有轻子味破坏耦合的 AZ ′ 玻色子在 e µ 通道中质量不超过 5.0TeV,在 e τ 通道中质量不超过 4.3Te V,在 µτ 通道中质量不超过 4.1TeV 时被排除。基准模型中的量子黑洞在 e µ 通道中阈值质量不超过 5.6TeV,在 e τ 通道中阈值质量不超过 5.2Te V,在 µτ 通道中阈值质量不超过 5.0TeV 时被排除。此外,还提取了与模型无关的限制,以便与具有相同最终状态和类似事件选择要求的其他模型进行比较。这些搜索的结果为发生轻子味道破坏衰变的重粒子提供了对撞机实验中最严格的限制。
由于锂离子电池已经变得越来越普遍,因此由于其对系统的可用性和安全性的影响,估计其剩余使用寿命(RUL)已成为必要。rul对于建立预后价值而建立预测维护策略特别有用。电池降解模型还应结合不同用法和环境条件对电池性能的影响,以对RUL进行可靠的预测。电池降解行为必须通过加速降解测试来表征,该测试是根据最佳设计理论计划的,以预测统治并区分竞争模型。可以通过使用基于良好降解模型的增强学习方法来选择最佳的维护策略。本文介绍了所有这些方法的简要概述。单独地,它们在文献中得到了很好的代表,但是考虑它们是一种新颖的维护方法。由于电池经常在不受控制的环境中使用,因此这种方法的综合政策和模型学习方面似乎尤其有希望。锂离子电池的健康状况(SOH)在降低过程中呈指数衰减。可以使用各种方法来估计SOH参数,包括从放电能力或开路电压(OCV),传感器融合算法或间接处理等效串联电阻(ESR)的直接估计。几个因素导致电池降解,包括电池化学,尺寸和操作条件。重要的是要注意,总体趋势始终是特征的