翻转芯片架构最近实现了多数电路的显着扩展,并已用于组装混合量子系统,这些系统结合了不同的底物,例如用于量子声学实验。标准的流芯芯片方法使用两个基板之间的超级电源电量连接,通常是使用复杂的辅助晶粒晶片键入系统实施的,这些系统可提供高度可靠且可固定的组件,但价格昂贵,但在设计中却有些影响,并且需要具有强大的底物,并且需要稳健的底物,从而可以维持对较大的压缩力对Coldium of Coldium decls of Coldium decls of Coldem bongs offers of Colds键。一种简单得多的方法是使用非常低强度的触点和气管胶粘剂组装模具,尽管这并不能在模具之间提供电力接触。在这里,我们证明了后一种技术可用于可靠地对量子电路,其中Qubits在单独的模具上,而无需电力连接。我们证明了两个模具中每个量子的全部矢量控制,并具有高度有限的单次读数,并进一步证明了纠缠产生的激发掉期,并基准了两个死亡的两个Qubit的受控Z纠缠栅极。这是一种简单且廉价的组装方法,用于二维量子电路集成,该方法支持使用精致或异常形状的底物的使用。
摘要 使用自动化高通量筛选对大型化合物库进行体外筛选既昂贵又耗时,并且需要专门的基础设施。相反,DNA 编码化学库 (DECL) 的选择可以使用大多数实验室中的常规设备快速完成。在本研究中,我们通过基于亲和力的选择 DELopen 库(面向学术界开放)鉴定了 SARS-CoV-2 主蛋白酶 (M pro ) 的新型抑制剂,该库包含 42 亿个化合物。经 X 射线晶体学证实,所鉴定的抑制剂是肽类化合物,含有 N 端亲电基团,能够与 M pro 的亲核 Cys145 形成共价键。此次 DECL 选择活动使得未优化的化合物 SLL11(IC 50 = 30 nM)的发现成为可能,证明了 DECL 技术能够快速探索大化学空间,从而直接鉴定有效的抑制剂,从而避免多轮迭代药物化学。 X 射线晶体学进一步证明,SLL11 具有高度独特的 U 形结合构象,这使得 N 端亲电基团可以环回到 S1 ' 亚位点,而 C 端氨基酸则位于 S1 亚位点。MP1 是 SLL11 的近似类似物,在 Caco-2 和 Calu-3 (EC 50 = 2.3 µM) 细胞系中测试时,在低微摩尔范围内显示出对 SARS-CoV-2 的抗病毒活性。由于肽类化合物可能存在低细胞渗透性和代谢稳定性的问题,因此未来将探索化合物的环化以提高其抗病毒活性。