尽管使用多电极阵列记录的数据具有高维性,但与行为相关的神经群体活动被认为是固有的低维。因此,使用潜在变量模型预测神经群体记录的行为已被证明是最有效的。然而,随着时间的推移,单个神经元的活动可能会漂移,并且由于植入的神经探针的移动,不同的神经元将被记录下来。这意味着,在某一天训练预测行为的解码器在另一天测试时表现更差。另一方面,有证据表明,行为的潜在动态即使在数月和数年内也可能保持稳定。基于这个想法,我们引入了一个模型,该模型能够从同一动物记录的以前未见过的数据中推断出与行为相关的潜在动态,而无需重新校准解码器。我们表明,无监督域自适应与经过多次训练的顺序变分自动编码器相结合,可以实现对未见过数据的良好泛化,并正确预测传统方法无法预测的行为。我们的研究结果进一步支持了行为相关的神经动力学低维且随时间稳定的假设,并将使脑机接口技术更加有效和灵活地使用。
脑机接口 (BCI) 解码器假设神经活动受到约束,这些约束在产生可处理的计算的同时反映了 11 科学信念。我们记录了低缠结(运动皮层神经轨迹的典型特性 12)如何产生不寻常的神经几何形状。我们设计了一个解码器 MINT,以 13 接受适合这些几何形状的统计约束。MINT 采用以轨迹为中心的 14 方法:神经轨迹库(而不是一组神经维度)提供了近似神经流形的支架 15。每个神经轨迹都有相应的行为轨迹 16,允许直接但高度非线性的解码。MINT 始终优于其他可解释 17 方法,并且在 42 次比较中的 37 次中优于表达性机器学习方法。然而,与这些 18 种表达性方法不同,MINT 的约束是已知的,而不是优化解码器 19 输出的隐式结果。 MINT 在各项任务中表现良好,表明其假设通常与神经数据的统计数据非常匹配。尽管 MINT 包含行为与可能复杂的神经轨迹之间的高度非线性关系,但它的计算简单、可扩展,并提供可解释的数量,例如数据可能性。MINT 的性能和简单性表明它可能是临床 BCI 应用的绝佳候选者。
用于脑部计算机界面(BCIS)的解码器对神经活动的限制进行了约束,被选为反映11种科学信念,同时产生可拖动的计算。我们记录了缠结的低缠结(运动皮层神经轨迹的典型特性12)会产生异常的神经几何形状。我们将一个解码器设计为13个包含适合这些几何形状的统计约束。Mint采用以轨迹为中心的14方法:神经轨迹的库(而不是一组神经维度)提供了一个脚手架15近似于神经歧管的脚手架。每个神经轨迹具有相应的行为轨迹,16允许直接但高度非线性的解码。薄荷始终优于其他可解释的17种方法,并且在42个比较中的37种中优于表达式机器学习方法。与这18种表达方法不同,薄荷的约束是已知的,而不是优化解码器19输出的隐含结果。薄荷跨任务的表现良好,这表明其假设通常与20个神经数据统计数据相匹配。尽管行为与潜在的21个复杂的神经轨迹之间具有高度非线性的关系,但Mint的计算是简单,可扩展的,并且提供了可解释的数量22,例如数据可能性。Mint的性能和简单性表明,它可能是23个临床BCI应用的绝佳候选者。24
使用头部安装的微型显微镜在体内钙像中实现了几周来自由表现动物的神经种群的跟踪活动。先前的研究着重于从神经元种群中推断行为,但是在内窥镜数据中提取过量荧光的神经元信号具有挑战性。存在分析管道包括利益区域(ROI)识别区域,可能会因假否定性而失去相关信息或从假阳性引入意外偏见。这些方法通常需要进行参数调整的先验知识,并且需要耗时以进行实施。在这里,我们开发了一个端到端解码器,以直接从原始的微观镜面图像预测行为变量。我们的框架几乎不需要用户输入,并且胜过需要ROI提取的现有解码器。我们表明,神经/背景残差带有与行为相关的附加信息。视频分析进一步揭示了残留物与细胞之间的最佳解码窗口和动力学。至关重要的是,显着性图揭示了我们解码器中视频分解的出现,并确定代表不同行为方面的不同集群。一起,我们提出了一个框架,该框架对微观镜面成像的解码行为有效,并可能有助于发现各种成像研究的功能聚类。
摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
量子信息的扰乱是随机化和基准测试协议、量子混沌的起源和黑洞物理学的根源,也是量子信息的一个重要特征。只要完全了解扰乱器,就可以解密这些信息 [arXiv:1710.03363.]。我们表明,即使事先不了解扰乱器,也可以通过一种学习算法来检索扰乱的信息,该算法可以构建一个高效的解码器。值得注意的是,解码器是经典的,因为它可以在经典计算机上有效地表示为 Clifford 算子。令人惊讶的是,只要没有成熟的量子混沌,经典解码器就可以保真地检索所有由无法在经典计算机上有效模拟的随机幺正所扰乱的信息。这一结果表明,人们可以以经典形式了解量子幺正的显著特性,并为量子混沌的含义提供了新的见解。此外,我们还获得了有关 t 掺杂 Clifford 电路(即包含 t 个非 Clifford 门的 Clifford 电路)的代数结构、它们的门复杂度和可学习性的结果,这些都是我们独立关注的。具体而言,我们表明 at 掺杂 Clifford 电路 U t 可以分解为两个 Clifford 电路 U 0 、 U ′ 0 ,它们之间夹着一个局部幺正算子 ut ,即 U t = U 0 ut U ′ 0 。局部幺正算子 ut 包含 t 个非 Clifford 门,对最多 t 个量子比特进行非平凡作用。作为简单的推论,t 掺杂 Clifford 电路 U t 的门复杂度为 O(n2+t3),并且它允许使用 poly(n,2t) 资源进行高效的过程层析成像。
从非侵入性大脑活动中解码语言引起了神经科学和自然语言处理研究人员越来越多的关注。由于脑记录的噪声性质,现有的研究将脑到词的解码简化为二元分类任务,即区分脑信号是其对应的单词还是错误的单词。然而,这种成对分类任务不能促进实用神经解码器的发展,原因有二。首先,它必须枚举测试集中的所有成对组合,因此预测大词汇表中的单词效率低下。其次,完美的成对解码器无法保证直接分类的性能。为了克服这些问题并进一步实现现实的神经解码器,我们提出了一种新颖的跨模态完形填空 (CMC) 任务,即以上下文为提示,预测神经图像中编码的目标单词。此外,为了完成这项任务,我们提出了一种利用预训练语言模型来预测目标词的通用方法。为了验证我们的方法,我们对来自两个脑成像数据集的 20 多名参与者进行了实验。我们的方法在所有参与者中平均实现了 28.91% 的 top-1 准确率和 54.19% 的 top-5 准确率,远远超过了几个基线。这一结果表明我们的模型可以作为 CMC 任务的最新基线。更重要的是,它证明了从大脑神经活动中解码大词汇表中的某个单词是可行的。