过去几年,谷歌人工智能部门一直在开发和研究一款名为 Sycamore 的量子计算机。为了进行量子计算,它使用多个硬件量子位创建单个逻辑量子位,这些量子位用于运行程序,同时执行错误校正。在这项新工作中,该团队开发了一种查找和纠正此类错误的新方法,并将其命名为 AlphaQubit
特性 多格式视频解码器支持 NTSC-(J、M、4.43)、PAL-(B/D/G/H/I/M/N)、SECAM 集成三个 54 MHz、9 位 ADC 由单个 27 MHz 晶振计时 线路锁定时钟兼容 (LLC) 自适应数字线路长度跟踪 (ADLLT™) 5 线自适应梳状滤波器 专有架构,用于锁定弱、嘈杂和不稳定的视频源,如 VCR 和调谐器 副载波频率锁定和状态信息输出 集成 AGC 和自适应峰值白模式 Macrovision® 版权保护检测 CTI(色度瞬态改善) DNR(数字降噪) 多种可编程模拟输入格式: CVBS(复合视频) S-Video (Y/C) YPrPb 分量(VESA、MII、SMPTE 和 Betacam) 6 个模拟视频输入通道 自动 NTSC/PAL/SECAM 识别 数字输出格式(8 位或 16 位): ITU-R BT.656 YCrCb 4:2:2 输出 + HS、VS 和 FIELD 0.5 V 至 1.6 V 模拟信号输入范围差分增益:0.6% 典型值
表面码纠错为实现可扩展容错量子计算提供了一种非常有前途的途径。当作为稳定器码运行时,表面码计算包括一个综合征解码步骤,其中使用测量的稳定器算子来确定物理量子比特中错误的适当校正。解码算法已经取得了长足的发展,最近的研究结合了机器学习 (ML) 技术。尽管初步结果很有希望,但基于 ML 的综合征解码器仍然局限于小规模低延迟演示,无法处理具有边界条件和晶格手术和编织所需的各种形状的表面码。在这里,我们报告了一种可扩展且快速的综合征解码器的开发,该解码器由人工神经网络 (ANN) 驱动,能够解码任意形状和大小的表面码,数据量子比特受到各种噪声模型的影响,包括去极化误差、偏置噪声和空间非均匀噪声。解码过程包括由 ANN 解码器进行综合征处理,然后进行清理步骤以纠正任何残留错误。基于对 5000 万个随机量子错误实例的严格训练,我们的 ANN 解码器被证明可以处理超过 1000(超过 400 万个物理量子比特)的代码距离,这是最大的 ML-
摘要:背景:由于皮层内脑机接口中神经记录的非平稳性,需要每天以监督的方式进行再训练以保持解码器的性能。使用基于强化学习(RL)的自校准解码器可以改善此问题。然而,在保持良好性能的同时快速探索新知识仍然是基于RL的解码器的挑战。方法:为了解决这个问题,我们提出了一种基于注意力门控RL的算法,该算法结合了迁移学习、小批量和权重更新方案来加速权重更新并避免过度拟合。所提出的算法在两只猴子的皮层内神经数据上进行了测试,以解码它们的伸手位置和抓握姿势。结果:解码结果表明,与未再训练的分类器相比,我们提出的算法的分类准确率提高了约20%,甚至比每日再训练的分类器取得了更好的分类准确率。此外,与传统的RL方法相比,我们的算法将准确率提高了约10%,在线权重更新速度提高了约70倍。结论:本文提出了一种自校准解码器,该解码器具有良好且稳健的解码性能,权重更新速度快,可能有助于其在可穿戴设备和临床实践中的应用。
其中 p I + p X + p Y + p Z = 1。我们主要考虑去极化噪声的情况 p X = p Y = p Z = p / 3,p I = (1 − p )。▶ 众所周知 1 使用随机 Clifford 单位向量进行编码,可以实现称为哈希界限的速率
摘要。这项研究描述了在想象的语音期间来自电皮质图(ECOG)的语音合成。,尽管使用基于变压器的解码器和预验证的Vocoder,我们的目标是产生高质量的音频。具体来说,我们使用了预训练的神经声码编码器Parallel Wavegan,将Transformer Decoder转换为对Log-Mel频谱图的输出,后者是在ECOG信号上训练的,将其转换为高质量的音频信号。在我们的实验中,使用来自13名参与者的ECOG信号,想象中的语音的综合语音实现了动态时间巡航(DTW)Pearson相关性,范围从0.85到0.95。这种高质量的语音合成可以归因于变压器解码器准确地重建高保真日志频谱图的能力,这证明了其在处理有限训练数据时的有效性。
量子纠错技术是消除量子计算机运行时噪声的重要方法。针对噪声带来的问题,本文利用强化学习对Semion码的缺陷进行编码,并利用经验重放技术实现译码器的设计。Semion码是与Kitaev toric码具有相同对称群Z 2 的量子拓扑纠错码,利用纠错码的拓扑特性将量子比特映射到多维空间,计算出译码器的纠错准确率为77.5%。计算拓扑量子Semion码的阈值,根据码距的不同,得到不同的阈值,当码距为d = 3, 5, 7时,p阈值= 0.081574,当码距为d = 5, 7, 9时,p阈值= 0.09542。并设计Q网络来优化量子电路门的代价,比较不同阈值下代价降低的大小。强化学习是设计Semion码译码器、优化数值的重要方法,为未来的机器工程译码器提供更通用的错误模型和纠错码。
磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
摘要 — 可植入脑机接口 (BMI) 在运动康复和移动性增强方面大有可为,它们需要准确且节能的算法。在本文中,我们提出了一种用于可植入 BMI 的回归任务的新型脉冲神经网络 (SNN) 解码器。SNN 通过增强的时空反向传播进行训练,以充分利用其处理时间问题的能力。所提出的 SNN 解码器在离线手指速度解码任务中的表现优于最先进的卡尔曼滤波器和人工神经网络 (ANN) 解码器。解码器部署在基于 RISC-V 的硬件平台上,并经过优化以利用稀疏性。所提出的实现在占空比模式下的平均功耗为 0.50mW。在进行无占空比的连续推理时,它实现了每次推理 1.88 µ J 的能效,比基线 ANN 低 5.5 倍。此外,每次推理的平均解码延迟为 0.12 毫秒,比 ANN 实现快 5.7 倍。
*通信:Cynthia A. Chestek博士生物医学工程B10-A171 NCRC Ann Arbor MI 48109-2800电话:734-763-1759