● 从天然气发电的特定用途开始:这将在很大程度上决定最合适的发电技术,从而决定所面临的具体财务和行业风险。开式循环燃气轮机的资本成本低,因此可以在相对较短的时间内实现收支平衡,从而降低投资风险。而且,在可再生能源占比较高的系统中,它们可以在可再生能源不足时运行,从而提供关键的可靠性服务,这实际上支持了中期可再生能源的建设。虽然开式循环燃气轮机在技术上不如联合循环高效,但其低固定成本的特性可以使它们更适合清洁能源转型。
我投资的金额与我账户的核心策略投资组合管理方式有何关系?无论您投资 1,000 美元还是 100,000 美元,您的策略都将涉及首席投资办公室 (CIO) 的相同专业管理和专业知识。在 1,000 美元时,注册账户使用策略的战略资产配置模型投资组合进行管理,该投资组合通常投资于一组交易所交易基金 (ETF),以提供多样化的市场敞口。如果注册账户中的资产通过升值或持续供款等方式增长,我们将自行决定将您的账户转换为策略的战术资产配置模型投资组合,该投资组合专为拥有更多资产的账户而设计。策略的战术资产配置模型投资组合通常使用更广泛的 ETF,并通过在资产类别内部和之间进行更精确的调整,为子资产类别提供更具体的敞口。这种转变通常在我们确定账户中有足够的资产来支持投资更广泛的 ETF 或共同基金(目前约为 5,000 美元)时发生。同样,如果账户的市值低于 5,000 美元,我们将根据投资指南自行决定重新平衡账户,使其与战略资产配置模型投资组合保持一致。我们将自行决定在策略的模型投资组合之间进行重新平衡。一般而言,这些转变的确切阈值可能会随时间而变化,并且这种转变的时间可能会因多种因素而异,例如市场走势、投资组合中 ETF 或共同基金的单股市场价值或待定的供款和提款。
p0,p1,p2和p3分别是端口0、1、2和3的SFR闩锁。将一个端口SFR(P0,P1,P2或P3)写成一点点,这会导致相应的端口输出引脚开关高。编写零会导致端口输出引脚开关低。用作输入时,端口引脚的外部状态将保存在端口SFR中(即,如果引脚的外部状态较低,则相应的端口SFR位将包含0;如果它很高,则位将包含1个)。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
后端 VLSI 设计流程知识 - 库、平面规划、布局、布线、验证、测试。规格和原理图单元设计、Spice 模拟、电路元件、交流和直流分析、传输特性、瞬态响应、电流和电压噪声分析、设计规则、微米规则、设计的 Lambda 规则和设计规则检查、电路元件的制造方法、不同单元的布局设计、电路提取、电气规则检查、布局与原理图 (LVS)、布局后模拟和寄生提取、不同的设计问题(如天线效应、电迁移效应、体效应、电感和电容串扰和漏极穿通等)、设计格式、时序分析、反向注释和布局后模拟、DFT 指南、测试模式和内置自测试 (BIST)、ASIC 设计实施。
我希望所有听众首先记住的是,当你将人工智能称为聊天机器人和将其称为合成关系时,你脑海中的想法是不同的。正是这种变化开始正确衡量这项技术的强大程度。只要我们称它为聊天机器人,我们就会在我们的脑海中将其视为 20 世纪 90 年代的 AOL 聊天机器人,它并没有那么有说服力,也没有改变我的力量。它不能改变我的想法,改变我的观点,改变我的政治倾向,改变我对自己的感觉。如果每个听这集的人都做一件事,那就是每次看到媒体使用聊天机器人这个词时,就把它划掉,在你的脑海中用合成关系代替它。它不是一个聊天机器人,而是一个你将与之建立关系的新实体。
周期性三维模式的抽象光刻缩放对于推进可扩展的纳米制造至关重要。当前最新的四型构图或极端紫外线图的线螺距下降到30 nm左右,可以通过复杂的后制造过程将其进一步改进到20 nm。在此,我们报告了使用三维(3D)DNA纳米结构的使用将线螺距缩小至16.2 nm,比当前最新结果小约50%。我们使用DNA模块化外延方法来制造具有规定的结构参数(俯仰,形状和临界维度)沿设计器组装途径的规定的3D DNA掩模。单次反应离子蚀刻,然后以7 nm的横向分辨率和2 nm的垂直分辨率将DNA模式转移到Si底物。DNA模块化表现的光刻相比,在现场效应晶体管中,高级技术节点的预期值的音调更小,并为现有的光刻工具提供了用于高级3D纳米制造的现有光刻工具的潜在补充。
在最近的研究中,已对开放式摄制对象检测任务进行了大量关注,旨在概括训练期间标记的类别的有限级别,并检测推理时任意类别名称所描述的对象。与常规对象检测相比,打开的词汇对象检测在很大程度上扩展了对象检测类别。但是,它依赖于计算图像区域与一组具有验证视觉和语言模型的任意类别名称之间的相似性。这意味着,尽管具有开放式的性质,但该任务仍然需要在推理阶段的预定义对象类别。这提出了一个问题:如果我们在推理中对对象类别没有确切的了解,该怎么办?在本文中,我们称之为新的设置为生成性开放式对象检测,这是一个更普遍和实际的问题。为了解决它,我们将对象检测形式为生成问题,并提出了一个名为generateu的简单框架,该框架可以检测密集的对象并以自由形式的方式生成其名称。尤其是,我们采用可变形的DETR作为区域促成生成器,其语言模型将视觉区域转换为对象名称。为了评估自由形式的对象划分任务,我们介绍了一种评估方法,旨在定量测量生成量的性能。广泛的实验表明我们的生成量强烈的零射击性能。代码可在以下网址获得:https://github.com/foundationvision/generateu。例如,在LVIS数据集上,我们的GenerateU在推理过程中属于类别名称,即类别名称无法看到类别名称,即使类别名称看不见类别名称,我们的GenerateU也可以与开放式唱机对象检测方法GLIP相当。
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。