电气调节深脑的设备已使神经和精神疾病的管理中的重要突破。此类设备通常是厘米尺度,需要手术插入和有线供电,从而增加了每日活动期间出血,感染和损害的风险。使用较小的远程材料可能导致侵入性神经调节较少。在这里,我们提出了能够无线传输电信号的磁电纳米电极,以响应于外部磁场。这种调节机制不需要对神经组织的遗传修饰,允许动物在刺激过程中自由移动,并使用非共振载体频率。使用这些纳米电极,我们在体内表现出神经元调节的体外和深脑靶标。我们还表明,局部亚乳头调制促进了通过基底神经节电路连接的其他区域的调制,从而导致小鼠行为变化。磁电材料提出了一种多功能平台技术,可用于侵入性较小的深脑神经调节。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
大学物理科学学院行星科学和天文学中心肯特,坎特伯雷,肯特 CT2 7NH,英国 b 莱斯特大学物理与天文学院空间研究中心,LE1 7RH,英国 c ESTEC,Keplerlaan 1,PO Box 299,NL-2200 AG 诺德维克,荷兰 d 国家天体物理研究所(INAF)空间天体物理与行星学研究所(IAPS),via Fosso del Cavaliere 100,00133 Roma,意大利 e 伦敦帝国理工学院皇家矿业学院地球科学与工程系,Prince Consort Road,南肯辛顿,伦敦 SW7 2BP,英国 f 马克斯普朗克太阳系统研究所,Justus-von-Liebig-Weg 3,D-37077 Go¨ttingen,德国 g 柏林自由大学地质科学研究所,柏林,德国 h 奥卢大学, 90014 Oulu, PO Box 3000, 芬兰 i 斯图加特大学,Raumfahrtsysteme Raumfahrtsysteme Raumfahrtzentrum Baden Württemberg, Pfaffenwaldring 29, 70569 Stuttgart, 德国 j Klaus-Tschira-Labor fur 化学化学, Institut fu海德堡大学地理科学中心,69120 海德堡,德国 k 苏黎世联邦理工学院,粒子物理和天体物理研究所,Wolfgang-Paulistrasse-27,CH-8093 苏黎世,瑞士
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
本文介绍了一种使用心电图 (ECG) 早期检测心脏异常的新型定制混合方法。ECG 是一种生物电信号,有助于监测心脏的电活动。它可以提供有关心脏正常和异常生理的健康信息。早期诊断心脏异常对于心脏病患者避免中风或心脏猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键心跳。首先,改进的 Pan-Tompkins 算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络 (CNN) 在标准和实时长期 ECG 数据库上进行实验。这项工作成功地对几种心跳异常进行了分类,例如室上性异位搏动 (SVE)、心室搏动 (VE)、心室内传导障碍搏动 (IVCD) 和正常搏动 (N)。所获得的分类结果显示,使用 MIT-BIH 数据库的分类准确率达到 99.28%,F 1 分数为 99.24%,而使用实时获取的数据库的分类准确率下降为 99.12%。
想象力,基于模型的推理和决策的神经基础对神经科学产生了很大的兴趣[5-7];在认知水平上,在动物和人类学习中已经假设并证明了模型学习和心理模拟[8-11]。其在基于人工模型的代理中的成功部署迄今已仅限于可用的确切过渡模型[12]或模型易于学习的域中的设置,例如符号环境或低维系统[13 - 16]。在代理无法使用模拟器的复杂域中,最近的成功由无模型方法主导[2,17]。在此类域中,采用标准计划方法的基于模型的代理的性能通常会遭受功能近似作用的模型错误[18,19]。这些错误在计划过程中复合了,导致过度优势和剂性能差。当前没有计划
众所周知,大脑中的可塑性电路通过突触整合和突触强度局部调节机制受到突触权重分布的影响。然而,迄今为止设计的大多数人工神经网络训练算法都忽略了刺激依赖性可塑性与局部学习信号之间的复杂相互作用。在这里,我们提出了一种新型的生物启发式人工神经网络和脉冲神经网络优化器,它结合了皮质树突中观察到的突触可塑性的关键原理:GRAPES(调整误差信号传播的组责任)。GRAPES 在网络的每个节点上实施依赖于权重分布的误差信号调制。我们表明,这种生物启发式机制可以显著提高具有前馈、卷积和循环架构的人工神经网络和脉冲神经网络的性能,它可以减轻灾难性遗忘,并且最适合专用硬件实现。总的来说,我们的工作表明,将神经生理学见解与机器智能相结合是提高神经网络性能的关键。
建议的活动:绿色IARI主题宣传运动的海报可能是针对反拆以抗裂缝的海报组织的,没有农作物残留物等。学生将分为由5至6名学生组成的不同团队。海报将分组制作。将鼓励团队通过绘画,绘画或口号写作来描述他们的想法 /想法。应根据表达技能,写作能力等评估团队练习。海报将由核心组织委员会判断,应分发赞赏 /参与证书。
