最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
摘要将深层生成模型纳入城市形式的生成是支持城市设计过程的一种创新且有前途的方法。但是,大多数深层生成的城市形式模型基于图像表示,这些图像表示并未明确考虑城市形式元素之间的拓扑关系。旨在开发深层生成模型并考虑拓扑信息的帮助下,本文回顾了城市形式的生成,深层生成的模型/深度图生成以及建筑和城市形式的深层生成模型的最新艺术状态。基于文献综述,提出了一个基于深层生成模型的基于拓扑的城市形式生成框架。深层生成模型的街道网络生成的假设forgraphgergrotandplot/building configurationGenerationByDeepgenerativeModels/Space语法以及所提出的框架的可行性需要在未来的研究中进行验证。
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
给定输入数据(表示为由其特征响应定义的 d 维空间中的点的集合(在此示例中为 2D),通过将整个训练集发送到树中并优化分割节点的参数来优化所选的能量函数,从而训练决策树。
众所周知,大脑中的可塑性电路通过突触整合和突触强度局部调节机制受到突触权重分布的影响。然而,迄今为止设计的大多数人工神经网络训练算法都忽略了刺激依赖性可塑性与局部学习信号之间的复杂相互作用。在这里,我们提出了一种新型的生物启发式人工神经网络和脉冲神经网络优化器,它结合了皮质树突中观察到的突触可塑性的关键原理:GRAPES(调整误差信号传播的组责任)。GRAPES 在网络的每个节点上实施依赖于权重分布的误差信号调制。我们表明,这种生物启发式机制可以显著提高具有前馈、卷积和循环架构的人工神经网络和脉冲神经网络的性能,它可以减轻灾难性遗忘,并且最适合专用硬件实现。总的来说,我们的工作表明,将神经生理学见解与机器智能相结合是提高神经网络性能的关键。
新辅助化学免疫性疗法已彻底改变了非小细胞肺癌(NSCLC)的治疗策略,并确定可能对这种先进治疗的候选者具有重要的临床意义。目前的多机构研究旨在开发一种深度学习模型,以预测基于计算机断层扫描(CT)成像的NSCLC中对新辅助免疫疗法的病理完全反应(PCR),并进一步探讨了拟议的深度学习签名的生物学基础。在2019年1月至2023年9月,总共有248名接受新辅助免疫疗法的参与者在Ruijin医院,Ningbo Hwamei医院接受NSCLC的手术,然后在Ruijin医院进行NSCLC手术和Zunyi医科大学的后医院。在新辅助化学免疫性疗法之前的2周内进行了成像数据。鲁伊因医院的患者被分为培训集(n = 104)和6:4比率的验证集(n = 69),而宁波·霍马伊医院(Ningbo Hwamei Hospital)和祖尼医科大学(Zunyi)医科大学的其他参与者则是外部队列(n = 75)。在整个人群中,在29.4%(n = 73)的病例中获得了PCR。我们对PCR预测深度学习签名曲线下的区域(AUC)为0.775(95%的置信间隔[CI]:0.649-0.901)和0.743(95%CI:0.618-0.869)的验证集和外部队列中的0.5%(95%)(95%)(95%)(95%)(95%)。临床模型的0.689)和0.569(95%CI:0.454-0.683)。此外,较高的深度学习评分与微环境中细胞代谢途径和更多抗肿瘤免疫的上调相关。我们开发的深度学习模型能够预测NSCLC患者的新辅助化学免疫性疗法。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
解决复杂的,暂时扩展的任务是控制学习(RL)的长期问题。我们假设解决此类问题的一个关键要素是组成性的概念。具有学习概念和子技能的能力,这些概念和子技能可以构成解决更长的任务的能力,即层次RL,我们可以获取时间扩展的行为。但是,为层次RL获取有效但一般的抽象是极具挑战性的。在本文中,我们建议将语言用作抽象,因为它提供了独特的组合结构,实现了快速学习和组合概括,同时保持了极大的灵活性,使其适合各种问题。我们的方法学习了一个遵循指令的低级政策和高级政策,该政策可以在本质上重复跨任务的抽象,从而允许代理人使用结构化语言进行推理。为了研究组成任务学习,我们介绍了使用Mujoco物理引擎和CLEVR引擎构建的开源对象相互作用环境。我们发现,使用我们的方法,代理可以学会求解各种暂时扩展的任务,例如对象排序和多对象重排,包括来自原始像素观测值。我们的分析表明,语言的组成性质对于学习各种亚技能和系统地推广到新的亚技能至关重要,与使用相同监督的非复合抽象相比,语言的构成性质至关重要。2
