电化学电池是我们社会中无处不在的设备。当用于关键任务应用时,在高度变化的操作条件下准确预测其放电终止的能力至关重要,以支持运营决策并充分利用整个电池的使用寿命。虽然有充电和放电阶段潜在过程的准确预测模型,但老化建模仍然是一个悬而未决的挑战。这种缺乏理解通常会导致模型不准确,或者每当电池老化或其条件发生重大变化时,就需要耗时的校准程序。这对在现实世界中部署高效、强大的电池管理系统构成了重大障碍。在本文中,我们介绍了 Dynaformer,这是一种新颖的深度学习架构,它能够同时从有限数量的电压/电流样本推断老化状态,并以高精度预测真实电池的全电压放电曲线。在评估的第一步中,我们调查了所提出的框架在模拟数据上的性能。在第二步中,我们证明了只需进行少量微调,Dynaformer 就能弥补模拟与从一组电池收集的实际数据之间的差距。所提出的方法能够以可控且可预测的方式利用电池供电系统直至放电结束,从而显著延长运行周期并降低成本。
糖尿病足溃疡 (DFU) 是影响糖尿病患者的一种严重并发症,超过一半的 DFU 都有感染风险。在这些感染中,约 20% 需要截肢 (1、2)。这是一个值得关注的重要问题,因为因 DFU 而截肢的患者的死亡率很高,预计超过一半的患者会在五年内死亡 (3)。此外,治疗和管理 DFU 及其并发症的经济负担超过了五大癌症,仅在美国,每年的费用就超过 110 亿美元 (4)。随着糖尿病 (DM) 患病率的持续上升,DFU 预计将成为全球卫生系统的更大负担,并且可能是最昂贵的糖尿病并发症之一 (5)。尽管在确定 DFU 治疗的新疗法方面取得了显着进步,但对 DFU 的根本病因和管理的早期诊断仍然具有挑战性。 DFU 愈合受损是一种复杂的发病机制,由多种因素引起,包括糖尿病足部感染、伤口缺血、免疫系统衰竭和血糖控制不佳(6-8)。DFU 管理需要在多个时间点评估感染和缺血情况以便更好地管理,但由于其侵入性,目前这种方法受到限制。由于农村地区无法接触到 DFU 伤口中心和临床专家,这个问题更加严重。因此,临床对用于分析伤口感染和缺血检测的非侵入性工具的需求尚未得到满足,这两个关键因素是伤口愈合受损。近年来,深度学习算法在疾病的检测和诊断方面表现出巨大的潜力,特别是在医学成像、放射学和病理学方面(9-11)。这导致了深度学习图像分析作为一种辅助工具的出现,它支持临床医生进行决策,提高疾病诊断和治疗的效率和准确性(12)。深度学习在糖尿病足溃疡的分类和定位方面也显示出了良好的效果。它在缺血和感染分类方面取得了很高的准确率,分别为 87.5% 至 95.4% 和 73% 至 93.5%(13-16)。此外,研究人员在糖尿病足溃疡定位方面也取得了重大进展,平均精度 (mAP) 值在 0.5782 至 0.6940 之间,F1 分数在 0.6612 至 0.7434 之间(17、18)。尽管取得了这些进展,但其中许多工具仍处于开发的早期阶段,缺乏预测感染、缺血和其他对糖尿病足溃疡伤口管理至关重要的身体特征的自动分析能力。此外,目前的伤口分析平台依赖于专有硬件附件,例如热扫描仪(例如 Pod Metrics 的 SmartMat)、使用结构光或激光的 3D 扫描仪(例如 Ekare.ai 的 Insight 3D 和 Swift Medical 的 Ray 1),和光学相干断层扫描 (OCT) 用于可视化和量化与糖尿病足溃疡形成相关的微血管结构 ( 19 , 20 )。这些专门附件的需求可能会限制普通人群获得糖尿病足溃疡治疗的机会。为了解决这些限制,开发一种非侵入性和自动化的工具至关重要,即使在资源有限的地区,也可以全面分析伤口组织。本研究旨在
杰西卡·韦姆彭(Jessica Wempen)教授因“矿山和环境监测的遥控感”而获得了庆祝U研究奖。 Wempen博士被Dean Butt提名,并被选为2019年整体研究工作的获奖者。迈克·尼尔森(Mike Nelson)教授被公认为是矿业,冶金和勘探(SME)研究员和杰出成员的社会。认可为中小企业研究员,授予了15年或以上的成员,他们为矿物行业和中小型企业做出了巨大持续的贡献。他还是2020年帕特里克·E·康纳奖的获得者,该奖项每年由犹他州矿业协会(UMA)授予,该奖项授予对犹他州矿业行业做出重大贡献的个人。Michael Free教授是2020 TMS(矿物,金属和材料协会)杰出服务奖的获得者。该奖项认可了一个对TMS服务的个人,“明确促进了该协会为其成员及其支持组织提供服务的能力。”
第一次提到深度伪造是在 2016 年美国总统大选一年多后,那次大选以虚假新闻现象为标志(Gunther 等人,2018 年;Lee,2019 年)。许多人担心接下来的 2020 年总统大选也会充斥着虚假信息,尤其是虚假新闻和深度伪造的结合,但这并没有发生(Meneses,2021 年)。对这次选举影响最大的深度伪造可能是 2019 年 5 月涉及纳西·佩洛西的深度伪造:当时的美国众议院议长看起来喝醉了,说话含糊不清,好像喝醉了一样(Stewart,2019 年)。关键在于,这不是深度伪造,因为它没有使用人工智能;相反,它是一个廉价伪造(或不太常用的浅层伪造),一段使用比深度伪造技术简单得多的手段编辑的视频(Pawelec,2022 年)。正如 Paris & Donovan (2019) 所说,深度伪造和廉价伪造的共存增加了区分两者的难度。这种类型的虚假信息可能对政治话语和未来选举产生的影响(Appel & Prietzel,2022)并非无关紧要,因为它是故意改变的视听内容,并通过社交媒体进行放大。至于佩洛西的视频,由于它是基于编辑软件或只是音频音调的变化,因此更容易做到,也更容易检测,这与今天的假新闻类似。这个例子强调了了解每一种现象的本质的必要性,尽可能正确地定义它,“以协助制定一致且理论上连贯的深度伪造定义”(Whittaker 等人,2023 年)。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
电气调节深脑的设备已使神经和精神疾病的管理中的重要突破。此类设备通常是厘米尺度,需要手术插入和有线供电,从而增加了每日活动期间出血,感染和损害的风险。使用较小的远程材料可能导致侵入性神经调节较少。在这里,我们提出了能够无线传输电信号的磁电纳米电极,以响应于外部磁场。这种调节机制不需要对神经组织的遗传修饰,允许动物在刺激过程中自由移动,并使用非共振载体频率。使用这些纳米电极,我们在体内表现出神经元调节的体外和深脑靶标。我们还表明,局部亚乳头调制促进了通过基底神经节电路连接的其他区域的调制,从而导致小鼠行为变化。磁电材料提出了一种多功能平台技术,可用于侵入性较小的深脑神经调节。
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
解决复杂的,暂时扩展的任务是控制学习(RL)的长期问题。我们假设解决此类问题的一个关键要素是组成性的概念。具有学习概念和子技能的能力,这些概念和子技能可以构成解决更长的任务的能力,即层次RL,我们可以获取时间扩展的行为。但是,为层次RL获取有效但一般的抽象是极具挑战性的。在本文中,我们建议将语言用作抽象,因为它提供了独特的组合结构,实现了快速学习和组合概括,同时保持了极大的灵活性,使其适合各种问题。我们的方法学习了一个遵循指令的低级政策和高级政策,该政策可以在本质上重复跨任务的抽象,从而允许代理人使用结构化语言进行推理。为了研究组成任务学习,我们介绍了使用Mujoco物理引擎和CLEVR引擎构建的开源对象相互作用环境。我们发现,使用我们的方法,代理可以学会求解各种暂时扩展的任务,例如对象排序和多对象重排,包括来自原始像素观测值。我们的分析表明,语言的组成性质对于学习各种亚技能和系统地推广到新的亚技能至关重要,与使用相同监督的非复合抽象相比,语言的构成性质至关重要。2