一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
定量敏感性映射(QSM)已广泛应用于神经变性和铁沉积的临床诊断,而QSM重建中仍然存在偶极反转问题。最近,提出了深度学习方法来解决这个问题。但是,这些方法中的大多数是需要成对输入阶段和地面真相对的监督方法。在不使用地面实际情况的情况下训练所有分辨率的模型仍然是一个挑战,而仅使用一个分辨率数据。为了解决这个问题,我们提出了一种基于形态的自我监督QSM深度学习方法。它由形态学QSM构建器组成,可以使QSM对采样分辨率的依赖性以及有效减少伪像并有效节省训练时间的形态学损失。所提出的方法可以在人类数据和动物数据上重建任意分辨率QSM,而不管该分辨率是更高还是低于训练集,这表现优于先前最佳的无监督方法。此外,对于先前无监督学习方法中使用的周期梯度损失,形态损失还将训练时间减少了22%。实验结果和临床验证表明,该提出的方法测量具有任意分辨率的精确QSM。,它在无监督的深度学习方法和竞争性绩效中取得了最新的结果,相对于最佳的传统方法。
深度学习(DL)是人工智能的子场(AI),涉及算法和模型的开发,这些算法和模型模拟了人类思想的解决问题能力。复杂的AI技术近年来在兽医领域引起了极大的关注。本综述提供了专门用于利用DL用于兽医诊断目的的研究的全面概述。我们的系统审查方法遵循PRISMA指南,重点关注DL和兽医医学的交集,并确定了422篇相关研究文章。在出口标题和摘要以进行筛选之后,我们将选择范围缩小到39个主要研究文章,直接将DL应用于动物疾病检测或管理中,不包括非主要研究,评论和无关的AI研究。目前研究的主要发现突出了2013年至2024年在各个诊断区域中DL模型的利用的增加,包括X射线照相术(占研究的33%),细胞学(33%),健康记录分析(8%),MRI(8%),环境数据分析(5%),照片/视频图像/视频图像(5%)和Ulteras(5%),5%(5%)。在过去的十年中,射线照相成像已成为最有影响力的。与专业兽医基准相比,使用DL模型对原发性胸腔病变和心脏疾病的原发性胸腔病变和心脏疾病的分类取得了显着成功。此外,该技术已被证明擅长于识别,计数和分类显微镜幻灯片图像中的细胞类型,从而在不同的兽医诊断方式上证明了其多功能性。深度学习在兽医诊断方面表现出希望,但仍有一些挑战。这些挑战的范围包括对大型和多样化的数据集的需求,可解释性问题的潜力以及在整个模型开发中与专家进行咨询以确保有效性的重要性。对这些考虑和实施DL在兽医医学中的设计和实施的全面理解对于推动该领域的未来研究和发展工作至关重要。此外,讨论了DL对兽医诊断的潜在影响,以探索兽医医学中DL应用进一步完善和扩展的途径,最终导致了增加的护理标准,并改善了动物的健康状况,随着这项技术的不断发展。
房屋飞行,穆斯卡·家族(Musca Housea),是许多病原体的机械载体,对人类和动物的健康构成了重大风险。二十多年前,发现了穆斯卡家族唾液腺肥大病毒(MDSGHV),从而感染了男性和女性苍蝇,并破坏了交配和生殖过程。MDSGHV可以感染各种组织,但其主要复制位点是苍蝇唾液腺。众所周知,节肢动物唾液腺不仅在获取食物,而且在传播病原体中起着重要作用。因此,了解向量唾液腺的组成以及载体与病原体成分之间的相互作用对于制定未来的控制策略至关重要。为此,我们对感染和未感染的房屋蝇的唾液腺进行了全面的RNA测序。我们的分析总共确定了6,410个推定的序列,其中6,309个源自M. tourplea,101个来自MDSGHV,分为25个官能团。此外,受感染和未感染的唾液腺之间的差异表达分析显示,有2,852个显着调节的转录本,突出了MDSGHV感染触发的深刻转录变化。总的来说,这些发现不仅加深了我们对家长唾液腺组成的理解,而且还提供了对病毒媒介相互作用的宝贵见解,这可以作为理解其他医学相关相互作用的模型。
经颅超声刺激(TUS)已成为一种无创神经调节的有前途的技术,但是当前系统缺乏有效靶向深脑结构的精确性。在这里,我们引入了一个先进的TUS系统,该系统在深脑神经调节中实现了前所未有的精度。该系统具有256个元素,头盔形的换能器阵列在555 kHz下运行,并与立体定位系统,个性化的治疗计划以及使用功能性MRI进行实时监控。在一系列实验中,我们证明了系统在视觉皮层中选择性调节侧向元素核(LGN)及其功能连接区域的活性的能力。参与者在同时进行的TU和视觉刺激期间表现出显着增加的视觉皮层活性,并且在各个个体之间具有很高的可重复性。此外,theta-burst Tus方案诱导了鲁棒的神经调节作用,刺激后至少40分钟观察到视觉皮层活性降低。通过对照实验证实,这些神经调节作用是针对靶向LGN的特异性的。我们的发现突出了这种先进的TUS系统对以高精度和特异性调节深脑回路的潜力,为研究脑功能和开发针对神经系统和精神疾病的靶向疗法提供了新的途径。前所未有的空间分辨率和延长的神经调节作用证明了该技术在研究和临床应用中的变革潜力,为非侵入性深层大脑神经调节的新时代铺平了道路。
摘要这项研究研究了Deepfake和开源智能(OSINT)在使虚假运动及其社会后果的作用。使用DeepFake检测挑战(DFDC)数据集进行技术评估,OSINT网络和情感分析的社交媒体数据集以及来自全球虚假信息索引的公众舆论数据,研究应用机器学习分类,网络分析,情感分析和中断时间序列(ITS)分析。技术评估的检测准确性为0.73,精度为0.75,召回0.70,确定了识别合成介质的增强区域。OSINT分析显示,虚假信息的关键放大器,用户1的学位中心性为0.263,betweensess中心性为0.135。 情感分析显示,平均情绪得分为-0.085,而其分析记录了公共信任后事件事件的9.76点下降。 建议包括开发自适应AI检测系统,实施全球监管措施,促进公共媒体素养以及鼓励道德的OSINTOSINT分析显示,虚假信息的关键放大器,用户1的学位中心性为0.263,betweensess中心性为0.135。情感分析显示,平均情绪得分为-0.085,而其分析记录了公共信任后事件事件的9.76点下降。建议包括开发自适应AI检测系统,实施全球监管措施,促进公共媒体素养以及鼓励道德的OSINT
尽管在过去的二十年中,全世界的孕产妇死亡率下降,但低收入国家和高收入国家之间存在很大的差距,其中94%的孕产妇死亡率集中在低收入和中等收入国家。超声是一种普遍的诊断工具,用于监测胎儿的生长和发育。尽管如此,即使对于熟练的超声师来说,以准确的解剖结构获得标准的胎儿超声平面也被证明具有挑战性和时间密集型。因此,为了确定超声图像的常见母胎胎儿,需要自动化的计算机辅助诊断(CAD)系统。已经提出了一种新的基于剩余的瓶颈机制的深度学习体系结构,其中包括82层深度。所提出的体系结构添加了三个残差块,每个块包括两个高速公路路径和一个跳过连接。此外,在每个残留块之前,已经添加了一个尺寸为3×3的卷积层。在训练过程中,使用贝叶斯优化(BO)而不是手动初始化初始化了几个超级参数。深度特征是从平均合并层中提取的,并执行了分类。在分类过程中,计算时间发生了增加;因此,我们提出了一种改进的基于搜索的飞蛾火焰优化算法,以进行最佳特征选择。然后根据所选功能使用神经网络分类器对数据进行分类。实验阶段涉及对超声图像的分析,专门针对胎儿脑和常见的母亲胎儿图像。所提出的方法可实现78.5%和79.4%的脑胎儿平面和常见母体胎儿平面的精度。与几个预训练的神经网和最先进的(SOTA)优化算法的比较显示出提高的精度。
值得注意的是,深海贻贝中的甲烷营养细菌 - 钥匙共生体 - 在暴露的浅水贻贝中占主导地位。这种转移与与免疫反应和内吞作用有关的基因表达的变化相关,突出了贻贝及其共生体之间的协同关系。
了解神经系统的功能需要绘制其由功能,解剖学或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞种群。但是,手动映射这些神经元很容易偏见,并且通常不切实际。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在鼠标全脑显微镜图像中完全自动化的3D检测神经元somata。我们通过绘制通过通过逆行反式突触病毒感染表达的细胞质荧光蛋白标记的大型细胞的大脑范围来证明我们方法的适用性和功能。