菲比·H·福斯特(Phoebe H. AJ,AK,AL,Johannes Levin Am,The,The,The,Adrian Danek AM,Markus Otto AP,Sorbi Sorbi AQ,Jonathan D. Rohrer A, *,遗传FTD倡议(Genfi)
由于人为气候变化,干旱的频率和严重程度正在增加,并且已经限制了世界许多地区的农作物系统生产力。在植物微生物组中,很少有微生物基团有可能有助于其在包括水的非生物压力事件下其宿主的锻炼和生产力。但是,考虑到多个共存的生物群体,微生物群落是复杂而综合的工作,以更好地了解整个微生物组如何对环境压力的反应。我们假设水应力将在玉米和甜菜的橄榄球中降低细菌,真菌和protistan微生物组组成以及王国间微生物相互作用的影响。,我们使用扩增子测序来对玉米和甜菜根刺激群中的细菌,真菌和protistan群落进行生长,并在炎症下生长并定义水。水定义
抽象的孩子在整个发展过程中都暴露于许多痕量元素。鉴于他们的ubiquity和对儿童的神经发展产生影响的潜力,这些暴露是公共卫生的关注点。这项研究试图确定使用前瞻性队列中操作测试的学习行为中与痕量混合物相关的定义。我们包括322名在墨西哥城招募的6-7岁的参与者,其中包含有关产前微量元素测量值(第三个孕乳铅和锰水平和锰水平,以及&尿液镉和砷水平),人口统计学协变量,以及逐步的重复获得(IRA),一项可观的学习任务。加权分位数总和(WQS)回归模型用于估计所有四个痕量元素和IRA性能的混合物的联合关联。表现受到不同元素
大豆是许多国家的主要作物,因其营养特性而被广泛用于从人类食品到动物产业。从经济角度来看,谷物链将大量资金转移到生产国的经济中。然而,与世界各地的其他农产品一样,大豆的最终产量可能会受到干旱等非生物环境压力的严重影响。由于豆荚和谷粒中的花朵可以最大限度地减少缺水造成的损害,研究人员一直致力于了解与开花过程相关的基因及其相互作用。本文介绍了一篇专门介绍大豆开花过程及其基因网络的综述,描述了基因相互作用以及基因如何在这一复杂机制中发挥作用,该机制也受日光和昼夜节律等环境触发因素的支配。目的是收集有关大豆开花过程的信息和见解,旨在提供有用的知识,以帮助开发耐旱大豆品系,最大限度地减少因开花延迟或提前而造成的损失,从而抑制财务和生产力损失。
伽马波段 (40 Hz) 活动对于感觉和认知处理过程中皮质间传输和跨神经网络信息整合至关重要。精神分裂症患者在响应 40 Hz 的听觉刺激时,支持同步伽马波段振荡的能力选择性降低。尽管这种 40 Hz 听觉稳态反应 (ASSR) 被广泛用作神经精神疾病治疗开发的转化脑电图生物标志物,但 ASSR 背后的时空动态尚未得到充分表征。在本研究中,应用了一种新颖的 Granger 因果关系分析来评估精神分裂症患者 (n = 426) 和健康对照受试者 (n = 293) 在响应 40 Hz 稳态刺激时跨皮质源的伽马振荡传播。两组均显示多个 ASSR 源相互作用,这些相互作用广泛分布于大脑各个区域。精神分裂症患者表现出明显的、层次化的连接异常。在反应开始间隔内,患者表现出从下额回到颞上回的连接异常增加,随后从颞上回到中扣带回的连接减少。在 ASSR 反应的后期(300-500 毫秒),患者表现出从颞上回到中额回的连接显著增加,随后从左上额回到右上额回和中额回的连接减少。这些发现既突出了健康受试者对简单伽马频率刺激的反应中分布式多个源的协调,也突出了
关于成人注意力/多动症(ADHD)的神经生理学(ADHD)的神经生理学相对较少的研究。不匹配负性(MMN)是一个与事件相关的潜在组件,代表了竞技前听觉处理,它与认知状态密切相关。我们研究了MMN特征作为生物标志物,以将药物为ADHD和健康对照组(HCS)分类。传感器级特征(振幅和潜伏期)和源级特征(源级激活),并使用被动听觉奇怪的球范式比较了34例ADHD患者的脑电图和45个HC患者的脑电图。分析了MMN特征与ADHD症状之间的相关性。最后,我们使用MMN的传感器和源级特征来应用机器学习以区分这两组。成年ADHD患者在额内中央电极处显示出明显较低的MMN振幅,并且在额叶,颞叶和边缘叶中的MMN源激活降低,这些lobes与MMN发生器和ADHD病理生理学密切相关。来源活动与多动症症状显着相关。基于MMN源活动特征,成人ADHD患者和HCS的最佳分类性能表现出81.01%的精度,82.35%的敏感性和80.00%的特异性。我们的结果表明,异常MMN反映了成年ADHD患者的病理生理特征,并且可以在临床上用作成人ADHD的神经标志物。
由父母迁移造成的左撇子现象已成为一个普遍的社会问题,并可能导致中国农村儿童的长期和潜在风险。重要的是要研究社会互动对中国左撇子儿童前额叶激活的影响,因为父母迁移对孩子的社会认知的可能影响。我们招募了81名52-76个月的农村中国学龄前儿童(平均= 64.98±6.321个月)的学龄前儿童具有三种不同的父母迁移状态(包括非 - 部分,部分,完全左右的儿童)。使用功能性近红外光谱(FNIRS),我们比较了行为和大脑激活,以及在两个不同的社交互动条件(儿童老师和儿童纠缠的情况)下,在三组(非,部分,部分,完全左旋的儿童)中进行了比较。的结果表明,与在前额叶皮层(PFC)中响应联合注意(RJA)相比,联合注意力(IJA)可能引起更高的大脑激活,尤其是在与陌生人引起联合关注的情况下。此外,关节注意的激活与儿童的语言评分,认知灵活性和面部表达识别呈正相关。更重要的是,在IJA条件下,部分左翼儿童诱发了更高的大脑激活,并且与完全/非左撇子儿童相比,语言水平更高。当前的研究提供了对左撇子儿童发育的神经基础的见解,并首次揭示了家庭经济水平和左撇子地位可能导致社会认知较低的人。
均衡的大量营养素(蛋白质,碳水化合物和脂肪)对于生物的福祉至关重要。足够的热量摄入量,但蛋白质消耗不足会导致多种疾病,包括kwashiorkor 1。味觉受体(T1R1 -T1R3)2可以检测环境中的氨基酸,而细胞传感器(GCN2和TOR)3监测细胞中氨基酸的水平。当剥夺饮食蛋白时,动物会选择一种食物来源,其中包含更大比例的蛋白质或必需氨基酸(EAAS)4。这表明,在EAA特异性饥饿驱动的反应的帮助下,食物选择旨在实现特定的大量营养素的目标量,这是鲜为人知的。在这里,我们在果蝇中表明,微生物组 - 脑轴轴检测到EAA的不足并刺激EAAS的补偿性食欲。我们发现,在蛋白质剥夺期间,神经肽CNMAMID(CNMA)5在前肠的肠细胞中高度诱导。CNMA-CNMA受体轴的沉默阻止了被剥夺的果蝇中EAA特异性饥饿驱动的反应。此外,带有EAA共生微生物组的gnotobiotic果蝇表现出对EAAS的食欲减少。相比之下,没有产生亮氨酸或其他EAA的突变体微生物组的gnotobiotic果蝇显示出更高的CNMA表达和EAAS的补偿性食欲更大。我们提出肠道肠细胞感知饮食和微生物组衍生的EAA的水平,并通过CNMA将EAA剥夺状态传达给大脑。
• 作者要感谢所有 Editas 同事帮助规划、执行、分析和展示这项工作 • 作者非常感谢马萨诸塞州眼耳研究所 (MEEI) 的 Eric Pierce 博士和 Qi Liu 博士提供 USH2A 患者的外周血单核细胞,这些细胞以 iPSC 的形式用于本文介绍的研究 • 编辑协助由 2 the Nth(英国柴郡)的 Hilary Wong 博士提供,并由 Editas Medicine 资助