伽马波段 (40 Hz) 活动对于感觉和认知处理过程中皮质间传输和跨神经网络信息整合至关重要。精神分裂症患者在响应 40 Hz 的听觉刺激时,支持同步伽马波段振荡的能力选择性降低。尽管这种 40 Hz 听觉稳态反应 (ASSR) 被广泛用作神经精神疾病治疗开发的转化脑电图生物标志物,但 ASSR 背后的时空动态尚未得到充分表征。在本研究中,应用了一种新颖的 Granger 因果关系分析来评估精神分裂症患者 (n = 426) 和健康对照受试者 (n = 293) 在响应 40 Hz 稳态刺激时跨皮质源的伽马振荡传播。两组均显示多个 ASSR 源相互作用,这些相互作用广泛分布于大脑各个区域。精神分裂症患者表现出明显的、层次化的连接异常。在反应开始间隔内,患者表现出从下额回到颞上回的连接异常增加,随后从颞上回到中扣带回的连接减少。在 ASSR 反应的后期(300-500 毫秒),患者表现出从颞上回到中额回的连接显著增加,随后从左上额回到右上额回和中额回的连接减少。这些发现既突出了健康受试者对简单伽马频率刺激的反应中分布式多个源的协调,也突出了
奖励学习缺陷是许多精神障碍的核心症状。最近的工作表明,这种学习障碍是由于使用奖励历史来指导行为的能力而引起的,但是这些障碍出现的神经计算机制仍不清楚。此外,有限的工作采用了跨诊断方法来研究引起学习def ICIT的心理和神经机制是否在精神病理学形式上共享。为了洞悉此问题,我们通过结合计算模型Ling和单次试验的EEG回归,探索了被诊断出患有重力疾病的患者(n = 33)或精神分裂症(n = 24)和33个匹配的健康对照组。在我们的任务中,参与者必须整合刺激的奖励历史,以决定是否值得赌博。在此任务中的自适应学习是通过动态学习率来实现的,这些学习率在第一次遇到给定刺激的情况下是最大的,并且随着刺激重复的增加而衰减。因此,在学习过程中,选择偏好理想地稳定并且不易受到误导性信息的影响。我们显示了减少学习动态的证据,两个患者群体都表现出超敏的学习(即减少腐烂的学习率),使他们的选择更容易受到误导的反馈。此外,还存在精神分裂症特异性的方法偏见,并且对Disconfirma的反馈(事实损失和反事实胜利)的抑郁症特异性提高。两个患者组中的不灵活的学习因神经加工的改变而感到恐慌,包括对任何一个患者组的预期值都没有跟踪。综上所述,我们的结果提供了证据,表明减少逐审学习动力学反映了抑郁症和精神分裂症的融合缺陷。此外,我们确定了疾病独特的学习缺陷。
空间记忆的损害,包括无法召回以前的位置并导航世界,通常是认知障碍之路的功能残疾的第一个迹象之一。虽然有许多试图测量空间记忆能力的筛查和诊断工具,但它们通常不代表现实生活中的情况,因此可能缺乏适用性。解决此问题的一种潜在解决方案涉及使用虚拟现实(VR),该虚拟现实将个人沉浸在几乎模拟的环境中,从而使场景更具代表现实生活,而没有任何相关风险。在这里,我们回顾了围绕VR用于筛查和诊断空间记忆障碍的证据,包括潜在的局限性以及与标准神经心理学测试的比较。我们还将讨论有关VR在康复中的潜在用途的证据,该空间记忆降低了尚未得到很好的研究,但如果证明成功,这可能会改变游戏规则。
目的:单侧中风的患者通常显示出半剧位的疏忽或较温和的对比性视觉缺陷,但在空间上也有非上侧面化的视觉缺陷。本研究的目的是比较左右半球中风患者的空间偏侧(即相反)和非外边(即一般)视觉缺陷。方法:参与者包括左半球(LH组,n = 20)或右半球(RH组,n = 20)和20个健康对照组的40例慢性单侧中风患者。为了评估对侧缺陷,我们使用了传统的纸笔取消任务(铃铛测试)和侧向目标计算机任务。为了评估非外边缺陷,我们开发了一种新型的大屏幕(173×277厘米)的计算机方法,即“球雨”任务,具有移动的视觉刺激和快节奏的要求,以选择性注意。结果:根据取消任务,没有相反的视觉缺陷。然而,在侧向目标计算机任务中,在双边试验中,RH患者比右侧目标更明显地错过了左侧。这种遗漏分布与对照和LH患者的遗漏分布有显着不同。在评估非侧向注意力的评估中,RH和LH患者的球降雨目标明显超过左侧和右半野对照。结论:基于计算机的评估敏感地揭示了单侧中风中视觉障碍的各个方面。右半球中风的患者表现出非外边的视觉不引起注意力。在右半球中风中,这些症状可能伴随着微妙的对比视觉缺陷,这些缺陷在取消任务中尚未引起人们的注意。
。cc-by-nc 4.0国际许可证未获得同行评审的认证)是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年6月3日。; https://doi.org/10.1101/2024.06.06.02.596989 doi:biorxiv Preprint
开发有效治疗神经退行性疾病的一个关键局限性是缺乏准确模仿人类疾病的复杂物理学的模型。人类会随着年龄的增长而积累的神经元内神经元的色素神经素,从而合成儿茶酚胺。神经元达到最高神经元素水平的神经元在parkinson,阿尔茨海默氏症和显然健康的衰老个体中优先退化。然而,在当前动物模型中未考虑这种大脑色素,因为啮齿动物等常见的实验室物种不会产生神经念珠菌。在这里,我们生成一种被称为TGNM的组织特异性的转基因小鼠,该小鼠模仿了基于组成型儿茶酚胺特异性表达人类糖果蛋白 - 生物糖蛋白酶蛋白酶酶的蛋白酶酶的表达,从而模仿了cantecholamineragramagic neuromelanin的人类依赖性脑部范围的分布。我们表明,与渐进性人类神经元素色素沉着平行,这些动物表现出与年龄相关的神经元功能障碍和变性,影响了许多脑回路和身体组织,与运动和非运动和非运动型呈现有关,让人想起早期神经变性阶段。该模型可以帮助探索大脑衰老和神经变性的新研究途径。
• 作者要感谢所有 Editas 同事帮助规划、执行、分析和展示这项工作 • 作者非常感谢马萨诸塞州眼耳研究所 (MEEI) 的 Eric Pierce 博士和 Qi Liu 博士提供 USH2A 患者的外周血单核细胞,这些细胞以 iPSC 的形式用于本文介绍的研究 • 编辑协助由 2 the Nth(英国柴郡)的 Hilary Wong 博士提供,并由 Editas Medicine 资助
强直性肌营养不良症,或 1 型强直性肌营养不良症 (DM1),是一种多系统性疾病,是成人最常见的肌营养不良症。它不仅影响肌肉,还影响许多器官,包括大脑。脑损伤包括认知缺陷、白天嗜睡以及视觉空间和记忆功能丧失。具有 CUG 重复的突变转录本的表达导致毒性 mRNA 功能的增强。反义寡核苷酸 (ASO) 策略治疗 DM1 脑缺陷的局限性在于 ASO 在全身给药后不会穿过血脑屏障,这表明应考虑其他给药方法。ASO 技术已成为开发多种人类疾病潜在新疗法的有力工具,其潜力已在最近的临床试验中得到证实。使用 IONIS 486178 ASO 靶向来自 DM1 患者人类诱导性多能干细胞的神经细胞中的 DMPK mRNA,可消除 CUG 扩增灶,实现 MBNL1/2 的核重新分布,并纠正异常剪接。在 DMSXL 小鼠脑室内注射 IONIS 486178 ASO 可使不同脑区中突变型 DMPK mRNA 的水平降低高达 70%。它还可逆转新生儿给药后的行为异常。本研究表明,IONIS 486178 ASO 靶向脑中的突变型 DMPK mRNA,并强烈支持基于鞘内注射 ASO 治疗 DM1 患者的可行性。
摘要:锰(MN)是一种用于各种酶类别的辅因子,是所有生物体的必需痕量金属。但是,过度暴露于MN会导致神经毒性。在这里,我们评估了暴露于Mn氯化物(MNCL 2)对生存力,形态,突触功能(基于神经素表达)和斑马鱼幼虫行为的影响。MNCL 2从受精后2.5 h暴露导致受精后5天的生存率降低(60%)。表型变化影响了身体长度,眼睛和嗅觉器官的大小以及视觉背景适应。这伴随着神经素免疫染色的荧光强度和神经素蛋白编码基因NRGNA和NRGNB的表达水平的降低,表明存在突触改变。此外,过度暴露于MNCL 2导致幼虫表现出姿势缺陷,运动活动的减少以及对光环境的偏爱受损。从鱼类水中去除MNCL 2后,斑马鱼幼虫恢复了它们的色素沉着模式并使其运动行为归一化,表明MN神经毒性的某些方面是可逆的。总而言之,我们的结果表明,MN过度暴露会导致斑马鱼幼虫中明显的形态改变,神经素表达的变化和行为障碍。