图纸:P01 Rev.C(拟议的区块规划)P02 Rev.B(拟议的通道和太阳能电池板细节)P03 Rev.C(拟议的位置规划)P04 Rev.A(拟议的 132kw NGED 变电站、拟议的变压器集装箱外壳、开关柜和逆变器、围栏、大门和闭路电视)P05(现有区块规划)P06(现有位置规划)P07 Rev.A(现有树木和林地、拟议的林地路线保护、现有和拟议的树篱、现有和拟议的树木)P08((现有土地排水保护,在太阳能发电场的整个生命周期内施工和维护通道)EWE/3015/01 Rev.C(排水策略渗透选项 1)EWE/3015/02 Rev.O(排水策略排放到水道)257-HAN-DRW-TSA Rev.01(遮阳分析) 257-HAN-DRW-AIP Rev.01(概览)2302703(扫描路径分析)带场地边界视点地图的视点地图(AONB)ZTV(理论可视化区域)图纸编号;P08(AONB、当地自然保护区和 SSSI);P09(预定古迹和历史建筑);P10(注册战场、公园和花园);P11(保护区);P12(第 1 至 6 部分)和 P13(第 7 至 9 部分)。视点 1(现有和拟议)VP-1 A518。 Weston Rd 至标记 1 视点 2 (现有和拟议) VP-2 Trent Walk 至标记 1 (方位 191 度) 视点 3 (现有和拟议) VP-3 Trent Walk 至标记 1 (方位 150 度) 视点 4 (现有和拟议)
摘要。背景/目的:结肠癌是最常见的癌症类型之一,也是癌症导致死亡的第二大原因。人们已经做出许多努力来研究结肠癌进展过程中的分子改变。然而,识别阶段特异性分子标记仍然是一个挑战。本研究的目的是开发一种新的计算方法来分析结肠癌各阶段差异基因表达和通路失调的变化,以揭示阶段特异性生物标记并加强药物再利用研究。材料和方法:结肠癌的转录组数据集用于识别(a)在四个结肠癌阶段中具有单调性倍数变化(MEG)的差异表达基因和(b)与参与差异表达基因(DEG)数量相关的单调富集(MEP)上升的扰动通路。通过计算机药物再利用流程,我们确定了调节 MEG 表达并靶向产生的 MEP 的药物。结果:我们的方法突出了 15 种 MEG 和影响其表达的 32 种候选再利用药物。我们还发现 51 种 MEP 根据其在结肠癌各阶段的 DEG 含量变化率分为两组。通过关注突出的再利用药物的目标 MEP,我们发现其中一种神经活性药物
环境和设备:· 环境温度范围................................. -10 至 40 摄氏度· 湿度................................................... <90%,无凝结· 海拔................................................... 所有规格均在海拔 < 2000m 处引用· 噪声................................................... < 50dBA @ 1m· 整体效率................................................... 85 至 91% 取决于型号· EMC................................................... 优于 EN55-022B· 机柜................................................... 镀锌钢,粉末涂层· 前面板................................................... 5U x 19”,阳极氧化铝· 机柜防护................................................... IP21· 仪表................................................... 数字读数输出输出安培、伏特(相间和相间中性线)、赫兹、千瓦和每相的功率因数。· CE 标志
摘要简介:鼻咽癌的发病机理(NPC)是复杂的,受宿主遗传学,病毒感染和环境因素在内的因素的影响,导致遗传和表观遗传修饰。尽管对早期患者的预后呈阳性,但大多数NPC病例都在高级阶段被诊断出,这突出了增强对早期诊断和治疗的可及性的紧迫性。驱动NPC进展的潜在分子途径仍然难以捉摸。本研究的重点是使用生物信息学技术和数据库进行研究,以了解对NPC中基因相关性和潜在应用的见解。材料和方法:从2017年1月至2024年6月以英文发表的搜索,利用了“鼻咽癌”,“生物信息学”,“基因表达”和“基因微阵列”等关键字,跨越了PubMed,Medline和Scopuss。基因表达综合(GEO)数据库用于访问NPC Messenger RNA(mRNA)表达分析研究。结果:大多数研究都利用GEO数据库来鉴定正常组织和NPC组织之间差异表达的基因(DEG),然后使用基因和基因组(KEGG)途径的基因本体论(GO)和京都百科全书进行功能分析。蛋白质蛋白质相互作用(PPI)的DEG网络通常是使用字符串构建的,并使用Cytoscape软件可视化。GO和KEG途径分析与PPI网络构建以及NPC发病机理下的失调途径和分子机制的有价值的见解。微阵列分析,尤其是GSE12452,GSE64634和GSE34573等数据集,已实现了与NPC相关的DEG的识别。PPI网络分析确定了与NPC发病机理有关的轮毂基因,例如DNALI1,DNAI2和RSPH9。通过GEPIA等平台和oncomine验证基因表达模式验证了已鉴定的生物标志物的临床相关性。 此外,采用RNA测序和生物信息学方法的研究发现了与NPC无线电抗性和预后有关的新型基因,为个性化的治疗策略铺平了道路。通过GEPIA等平台和oncomine验证基因表达模式验证了已鉴定的生物标志物的临床相关性。此外,采用RNA测序和生物信息学方法的研究发现了与NPC无线电抗性和预后有关的新型基因,为个性化的治疗策略铺平了道路。
摘要:U-104是一种有效的碳酸酐酶(CAS)的抑制剂,已显示为几种人类癌症类型的潜在抗肿瘤药物。但是,U-104的下游机制及其在舌鳞状细胞癌(TSCC)中的功能尚不清楚。既没有证实U-104的抗肿瘤效应是否取决于Ca 9和Ca 12。在这项工作中,我们发现了通过RNA测序调节的差异表达的基因(DEG)和电势细胞过程。与细胞死亡相关,细胞增殖,迁移和对药物细胞过程的反应是最高的GO(基因本体学)过程,这与观察到的TSCC 15细胞中U-104治疗的生物学作用一致。此外,Ca 9或Ca 12的敲低(KD)完全消除了对细胞迁移,细胞死亡和临界DEG表达的影响。全部,我们的研究提出了在转录组水平上U-104的调节机制,并证明了u-104的抗肿瘤功能取决于TSCC中Ca 9和Ca 12。我们的发现扩展了有关U-104抗肿瘤功能的当前知识,并为TSCC提供了潜在的治疗选择。关键字:碳酸酐酶抑制剂; U-104; Ca 9; Ca 12;舌鳞状细胞癌CLC编号:R 739。86文档代码:
胰岛中基因表达的表征及其在2型糖尿病(T2D)中的改变对于理解胰岛功能和T2D发病机理至关重要。我们在188个捐助者的胰岛中利用了RNA测序和全基因组基因分型,以创建胰岛基因视图(IGW)平台,以使科学界可以轻松访问此信息。表达数据与胰岛表型,糖尿病状态,其他胰岛表达基因,胰岛激素编码基因以及胰岛素靶组织中的表达有关。IGW Web应用程序可为特定感兴趣的基因产生输出图。与对照组相比,在IGW中,在T2D供体胰岛中鉴定了284个差异表达的基因(DEG)。40%的DEG表现出与胰岛激素编码基因共同表达的细胞类型富集和大比例。胰高血糖素(GCG,56%),淀粉蛋白(IAPP,52%),胰岛素(INS,44%)和生长抑制剂(SST,24%)。抑制两个DEGS,UNC5D和SERPINE2,在人β细胞模型中损害了葡萄糖刺激的胰岛素分泌和影响细胞存活。IGW的探索性使用可以帮助设计更全面的功能后续研究,并有助于确定T2D中的治疗靶标。
摘要。- 目的:这项研究的目的是鉴定枢纽基因并揭示糖尿病性视网膜病(DR)的骨质机制。材料和方法:我们在我们的研究中使用了基因表达综合(GEO)DATASET GSE60436。在筛选差异表达的基因(DEG)后,我们形成了基因和基因组(KEGG)功能分析的基因本体学(GO)和京都百科。随后,使用搜索工具来检索相互作用的基因(String)数据库并使用Cytoscape软件进行访问,并使用搜索工具进行了搜索工具来构建蛋白 - 蛋白质相互作用(PPI)网络。最后,我们通过CytoHubba插件确定了10个集线器基因。结果:总共确定了592摄氏度,包括203个上调的基因和389个下调基因。DEG主要富含视觉感知,光感受器外部段膜,视网膜结合和PI3K-AKT信号通路。通过构建蛋白质 - 蛋白质间的作用(PPI)网络,最终确定了10个中心基因,包括CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,PDE6B,NRL,RPE65,RPE65,GUCA1B和AIPL1。结论:CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,NRL,RPE65,GUCA1B和AIPL1可能是潜在的生物标志物,而治疗性TAR-可用于DR。
摘要背景:孕妇接触空气污染物与多种不良妊娠结局有关,包括复发性流产(RSA)。但其潜在机制仍不清楚。本研究旨在了解RSA的机制及其与空气污染暴露的关系。我们通过批量RNA测序(RNA-seq)、简化代表性亚硫酸盐测序(RRBS)和单细胞RNA测序(scRNA-seq)比较了人工流产个体和RSA个体的蜕膜组织数据。使用RT-qPCR和焦磷酸测序验证差异表达基因(DEG)。使用逻辑回归模型研究空气污染物暴露与RSA之间的关联。结果:我们通过重叠RRBS和RNA-seq数据鉴定出98个具有异常甲基化的DEG。鉴定出19种免疫细胞亚群。与正常对照相比,NK细胞和巨噬细胞在RSA患者蜕膜中的比例不同。我们观察到 RSA 患者和对照组之间的 IGF2BP1 甲基化和表达存在差异。此外,我们观察到孕前一年和孕早期母亲接触空气污染物与 RSA 风险之间存在显著的正相关性。中介分析表明,空气污染对 RSA 风险的影响中有 24.5% 是通过 IGF2BP1 甲基化介导的。结论:这些发现揭示了 RSA 的全面细胞和分子机制,并表明空气污染可能通过影响 IGF2BP1 启动子的甲基化水平导致妊娠丢失。关键词:RSA、scRNA-seq、RRBS、空气污染物、PLS-PM
抽象作物植物对压力的反应涉及基因表达模式的变化。这种基因调节的复杂过程取决于顺式和反式作用成分的存在。理解与植物对胁迫反应相关的基因表达变化的关键步骤之一始于鉴定差异表达基因(DEGS)启动子中“保守域”的鉴定。保守域可以通过为转录因子提供结合位点在基因调节中起关键作用。在这项研究中,我们旨在确定149摄氏度的启动子中的顺式调节元件(CRE),这些元素在两个水稻品种的转录组分析中被鉴定出来:cypress and Lagrue。这两个水稻品种根据其承受热应激的能力,在高夜晚(HNT)下分别表现良好。可以预期,受Hnt应力向上或向下调节的DEG要么在其启动子中表现出一组共享的CRE,要么在特定DEG模式中共有多态模式,其识别可以帮助理解植物对压力的各种反应。将使用多种计算方法来找到与水稻中HNT应力有关的顺式作用元件 /转录激活基序。这些信息将在机器学习算法中利用,以开发针对繁殖目的操纵基因的预测模型,例如提高谷物质量和产量,从而增强了水稻植物对高夜间温度的韧性,并为水稻作物的整体适应性做出了贡献。
帕金森病(PD)的准确诊断仍然具有挑战性,该病的确切病因尚不清楚。目的是识别与PD中补体系统相关的枢纽基因并探索其潜在的分子机制。首先,通过差异表达分析和WGCNA挖掘与PD相关的差异表达基因(DEG)和关键模块基因。然后,通过将DEG,关键模块基因和CSRG相交获得差异表达的CSRG(DE-CSRG)。随后,进行MR分析以识别与PD有因果关系的基因。基于具有显著MR结果的基因,进行表达水平和诊断性能验证以产生枢纽基因。进行功能富集和免疫浸润分析以深入了解PD的发病机制。采用qRT-PCR评估枢纽基因的表达水平。经过MR分析和相关验证,最终确定CD93,CTSS,PRKCD和TLR2为枢纽基因。富集分析表明枢纽基因的主要富集途径。免疫浸润分析发现,枢纽基因与多种免疫细胞(如髓系抑制细胞、巨噬细胞等)存在显著相关性,qRT-PCR结果显示CTSS、PRKCD、TLR2的表达水平与公开数据库的表达水平一致,由此挖掘出PD中与补体系统相关的4个枢纽基因,为PD的诊断和治疗提供了新的视角。
