塑料污染已升级为全球环境危机,数百万吨合成聚合物在生态系统中积累,对生物多样性和人类健康构成重大威胁。传统的塑料废物管理方法,如机械和化学回收,在可持续性方面表现出局限性,特别是对于聚乙烯 (PE) 和聚苯乙烯 (PS) 等聚合物,它们表现出明显的抗降解性。利用微生物酶和合成生物学的生物技术方法为解决这一紧迫问题提供了一种有希望的替代方案。促进聚对苯二甲酸乙二醇酯 (PET) 降解的酶(如 PETase 和 MHETase)与针对更难降解塑料的漆酶和脂肪酶结合,在分子水平上分解塑料方面表现出了巨大的潜力。尽管取得了这些进展,但在降解效率方面仍然存在挑战,尤其是对于非 PET 塑料,以及扩大这些生物技术工艺的经济可行性。此外,温度、pH 值和氧气水平等环境参数显著影响酶的功能,而监管和社会障碍阻碍了转基因生物 (GMO) 的利用。尽管如此,蛋白质工程、基于 CRISPR 的基因编辑等新兴技术以及生物反应器等工业应用为克服这些挑战提供了途径。本文探讨了生物技术塑料降解的当前形势、挑战和前景,强调了其对实现全球循环经济目标和加强可持续废物管理战略的潜在贡献。
1格勒诺布尔阿尔卑斯大学,CEA,LITEN,DTS,LSA,INES,F-38000,法国2UniversitéClermontAuvergne-CNRS,ICCF,F-63000 Clermont-Ferrand,法国,法国,法国,作者:Romain Couderc couderc gerderc lomain coudercǀ emain.main.comain.coudcrc@ic.frc@ic。 +33479792361摘要数十年来,在操作太阳阵列中观察到了由紫外线暴露引起的光伏(PV)模块。不仅仅是一种美学上的不便,这种现象可以严重损害模块的性能,并通过封装的光保护损害其他降解机制。为了更好地理解当前材料中的这种反应,在紫外线照射下,具有紫外线或紫外线商业封装的HJT单子弹模块是在紫外线照射下老化的,并通过视觉检查,荧光成像和闪光测试对其进行检查。仅通过紫外线吸收器稳定的封装物进行了变色。一方面,紫外线吸收器光氧化是导致影响光传输到细胞的黄色发色团的形成。因此,它们导致光生电流的净减少,该电流在加速4200小时后达到4%。另一方面,他们的光漂白解释了模块边缘缺乏变色。根据当前封装配方的行为,必须提高紫外线吸收添加剂的稳定性,以确保设备在30年内的耐用性。限制全球变暖的最有害影响的简介,预计我们的社会的重大变化。太阳能光伏(PV)在过去十年中飙升,到2020年达到821 TWH。在发电方面,1.5°C的情况需要在全球能量混合物中急剧增加可再生能源部分[1]。到2030年需要8倍的容量才能达到零净排放到2050年,这是1.5°C的情况[2]。由于PV系统耐用性对其水平的能源成本(LCOE)[3]和生命周期评估(LCA)[4]的影响很高,因此必须对影响PV模块的不同降解模式进行彻底研究,以确保能量过渡。
https://doi.org/10.5194/egusphere-2025-126 预印本。讨论开始日期:2025 年 2 月 7 日 c ⃝ 作者 2025。CC BY 4.0 许可。
Rajendra Kurapati、Vincent Maurice、Antoine Seyeux、Lorena H Klein、Dimitri Mercier 等人。用于太空应用的银镜堆栈对环境退化的先进保护。材料科学与技术杂志,2020 年,先进耐腐蚀材料和新兴应用,64,第 1-9 页。�10.1016/j.jmst.2020.01.019�。�hal-02489359�
致谢我们要感谢所有访谈的参与者和专家审查研讨会的高度宝贵意见和思考。此外,我们要感谢Motsomi Maletjane和Sonam Lhaden Khandu(LDC专家小组和UNFCCC的国家适应计划单位)在本指南的开发过程中不断支持。Moreover, we want to acknowledge Elizabeth Walinder, Nokwanda Faith Nomathemba Mgwaba (both UNU-EHS), Graciela Soledad Miret Martínez (Oficina Nacional de Lucha Contra la Desertificación y Sequía, Paraguay), Antwi-Boasiako Amoah (Environmental Protection Agency, Ghana), Susan Mathew, Alex Zvoleff (国际保护)和更广泛的趋势。地球团队为案例研究做出了巨大贡献。最后,我们要感谢会议的参与者和组织者“在2024年,孟加拉国达卡纳佩克斯波(Napexpo)在孟加拉国达卡(Napexpo)期间,在本指南的有用性可以进行探讨。我们要感谢Lou Perpes(UNEP)的强烈参与会议的设计和组织,这是UNCCD,UNU-EHS和UNEP的共同努力。
摘要:针对为带有电动汽车的住宿建筑提供电力的光伏/电池系统,对几种复杂程度不断增加的能源管理策略在成本效益方面进行了比较。实施了有或没有生产预测的基于规则的控制方法,并将其与用作参考的线性规划策略进行了比较。最简单方法和参考方法之间的增益改进约为 27%。看来电池循环次数差别很大(高达 55%),导致或多或少快速老化。因此添加了电池退化模型,并在策略收益中引入了相应的成本。结果取决于初始电池成本,会受到显著影响,从而改变控制策略的相关性。15
原始淀粉降解淀粉酶(RSDA)是一种酶,具有在不经历胶质化的情况下降解淀粉颗粒中的葡萄糖的能力。进行了这项研究,以探索和表征来自萨马林达卡朗穆斯河体水的细胞外RSDA产生细菌。在含有1%淀粉颗粒的养分琼脂中对RSDA活性进行了定性分析,在板块充满碘溶液后,具有RSDA活性的细菌菌落是细菌菌落周围细菌菌落周围的清晰光晕。14个细菌菌落中的5个细胞外分泌RSDA。使用二硝基水杨酸(DNS)方法测试了5种细菌的RSDA酶的淀粉酶活性。具有菌落代码KM 5的细菌的RSDA活性为0.332 U/ml。RSDA的最佳工作条件在pH 5和温度为40°C。使用16S rRNA基因鉴定细菌基因型,表明KM5是克雷伯氏菌SP,称为Klebsiella km5。
在第二部分中,我们描述了 EEPROM 模拟结构并提供了校准方法,从而得出与实验结果高度一致的预测编程窗口。第三部分重点介绍耐久性,即在两种编程状态不再可区分之前可以承受的写入/擦除循环次数。通过在隧道体氧化物中插入负捕获电荷,可以重现实验编程窗口关闭。为了支持这种方法,我们表明总捕获电荷密度遵循常用的幂律 [6]。作为实际应用,我们建议使用此预测 TCAD 模型大幅缩短实验循环测试时间。最后,在第四部分中,我们展示了如何扩展此模型以包括高温对编程窗口关闭的影响。
神经退行性疾病的特征是神经元结构和功能的进行性分解以及错误折叠的蛋白质聚集体和有毒蛋白质低聚物的病理积累。神经元生理恶化的主要因素是蛋白酶体介导的蛋白质分解代谢途径的破坏,蛋白酶体是一种大多数细胞蛋白质降解的大蛋白酶复合物。以前,人们认为蛋白酶体需要用多泛素链标记蛋白质靶标,这是一种称为泛素蛋白 - 蛋白酶体系统(UPS)的途径。因此,大多数关于蛋白酶体在神经变性中作用的研究历史上都集中在UPS上。然而,越来越多地认识到额外的泛素独立途径及其在神经变性中的重要性。In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identi fi cation and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid蛋白酶体。在衰老,氧化应激,蛋白质聚集和与年龄相关的神经退行性疾病的背景下进一步讨论了这些途径,并特别关注阿尔茨海默氏病,亨廷顿病和帕金森病。对神经退行性中泛素独立的蛋白酶体功能的机理理解对于开发治疗这些毁灭性疾病的疗法至关重要。本综述总结了神经变性中泛素独立的蛋白酶体研究的当前状态。