a 德国航空航天中心 (DLR) 工程热力学研究所,Pfaffenwaldring 38-40, 70 569 Stuttgart,德国 b 亥姆霍兹乌尔姆研究所 (HIU),Helmholtzstra ß e 11, 89 081,乌尔姆,德国 c 乌尔姆大学电化学研究所,Albert-Einstein-Allee 47, 89 081,乌尔姆,德国 d 日本宇宙航空研究开发机构 (JAXA) 宇宙航行科学研究所,神奈川县相模原市中央区吉野台 3-1-1,邮编 252-5210,日本 e 高等研究研究生院 (SOKENDAI),神奈川县相模原市中央区吉野台 3-1-1,邮编 252-5210,日本 f 全球零排放研究中心,国家先进工业科学技术研究所 (AIST),日本茨城县筑波市梅园 1-1-1,邮编 305-8568 g 日本国家先进工业科学和技术研究所 (AIST) 能源保护研究所,日本茨城县筑波市梅园 1-1-1,邮编 305-8568 h 日本长冈工业大学材料科学与技术系,日本新泻县长冈市上富冈 1603-1,邮编 940-2188
截至 2024 年 9 月,我们组建了一个包含 256 种靶向蛋白质降解剂 (TPD) 的综合数据库,涵盖所有研究、临床前、临床开发和上市资产。核心来源。我们使用 EvaluatePharma 数据库汇编了我们的初始资产集。为了识别相关资产,我们根据 EvaluatePharma 整体研发管线数据库的“作用机制”或“药物类别”列中的关键词(“降解剂”、“PROteolysis Targeting Chimera”、“PROTAC”、“BiDAC”、“免疫调节药物”、“IMiD”、“Cereblon E3 连接酶调节药物”、“CELMoD”、“SERD”、“分子胶”、变体)对数据库进行了过滤。验证。我们手动将生成的数据库与公司网站进行交叉检查,以将该机制归类为 TPD,结果删除了约 20 种被错误归类为 TPD(例如抑制剂、激动剂、抑制剂)的资产。为了验证我们的列表是否是最新的,我们使用相同的 TPD 关键词扫描了最近的新闻稿、会议报告、学术出版物和公司网站。这次扫描增加了两个最近进入临床的资产,并删除了六个最近已停止的资产。鉴于 EvaluatePharma 的捕获偏差,我们预计研究、临床前和美国/欧盟以外资产的覆盖率会较低。技术。对于归类为 TPD 的资产,我们根据技术将其分为当前一代、下一代和未指定。当前的技术有:分子胶(包括 IMiD 和 CELMoD);异双功能降解剂(包括直接募集普遍表达的 E3 连接酶的小分子异双功能降解剂,例如 PROTAC);选择性雌激素受体降解剂 (SERD)。正在研发的下一代技术有:降解剂-抗体偶联物 (DAC);细胞外蛋白的分子降解剂 (MoDE);伴侣介导 (CHAMP);自噬 (AUTAC)。请注意,根据分子结构和机制,雌激素受体降解剂被归类为 SERD 和异双功能降解剂;例如,elacestrant 被归类为 SERD,而 vepdegestrant 被归类为异双功能降解剂。另请注意,鉴于计划启动与自噬研究状态之间的比较,三种结构未公开的异双功能“自噬刺激剂”被归类为 AUTAC,但可能是类似的自噬技术(例如 ATTEC)。开发阶段。“已批准”资产目前已获批准。“临床”资产目前处于 I-III 期临床试验阶段,使用 ClinicalTrials.gov 和/或公司网站确定。“研究”资产目前正在积极研究或临床前开发中,使用新闻稿和/或公司网站确认。治疗领域。对于上市资产,我们使用批准新闻稿和药物说明书手动确认治疗领域。对于临床资产,我们使用 ClinicalTrials.gov 和/或公司网站手动确认治疗领域;如果某项资产存在多项临床试验,则使用最先进的试验来确定治疗领域。对于研究和临床前资产,我们从 EvaluatePharma 数据库中提取治疗领域。治疗领域被合并为资产数量最多的三个类别(癌症、神经病学和免疫学),然后是“其他”,包括泌尿道、感染、呼吸道、皮肤、糖尿病、胃肠道、肌肉骨骼、肝脏、血液、心血管、泌尿道和其他(每种有 1-5 个资产)。目标。对于已上市资产,我们使用批准新闻稿和药品说明书手动确认目标蛋白。对于临床资产,我们使用 ClinicalTrials.gov 和/或公司网站手动确认目标蛋白。对于研究和临床前资产,目标蛋白是根据“作用机制”和“药物类别”字段中的关键词的人工检查来确定的,例如 SMARCA2 降解剂、α-突触核蛋白 (SNCA) 降解剂,并辅以公司网站、新闻稿和 Citeline。
印度的土地层次离子会导致土壤侵蚀,n utrient Depl etion和Fe rtity降低。30%o f soi l是分级的,d d g g fureds Exace rbat e this(Pandey,2 023)。Land d egrada tion, causi ng cro p fail ures and f ood security issues, is exp ecte d to dec rease by 20% by 2 05 0 due t o cl imate cha nge (PIB, 2023) Over -ext raction of gro undw ate r le ads to decrea sed w at er tables an d aqu ifer recharge , impact ing 60% of agricult ure.groun dwater l ev e e e e e e e e e e e e e e e e e e e e e e var的说唱量正在下降,影响了c rop yi elds and prod ucti vity。气候变化是作物选举和害虫管理,增加了营养不良和微量营养素的缺陷,占印度人口的18.7%(NFHS,2019-2021)。缺水和水质差也会导致健康问题和经济损失,因为70%的农村家庭仍主要取决于农业的生计(FAO,2024年)。
1关于土著人民权利的专家机制,呼吁投入:报告“土著人民授予其传统经济的权利”,高级人权专员办公室(于2024年11月20日访问)。https://www.ohchr.org/en/calls-for-input/2025/call-inputs-repter-right-right-indigenous-peoples-their-their-传统 - 经济学。 问题№3:“研究与其传统经济和自然资源管理相关的政府和决策中的土著机构在相关经济和环境决策过程中的参与程度。 确定参与的障碍,并制定在这些过程中增强土著代表和影响力的策略。”https://www.ohchr.org/en/calls-for-input/2025/call-inputs-repter-right-right-indigenous-peoples-their-their-传统 - 经济学。问题№3:“研究与其传统经济和自然资源管理相关的政府和决策中的土著机构在相关经济和环境决策过程中的参与程度。确定参与的障碍,并制定在这些过程中增强土著代表和影响力的策略。”
锂离子电池(LIB)的健康评估通常依赖于持续的充电/放电协议,通常会忽略涉及电动汽车中普遍存在的动态电流轮廓的情况。LIB的常规健康指标也取决于测量数据的均匀性,从而限制了它们对不均匀条件的适应性。在这项研究中,提出了一种基于自我监督学习范式估算LIB健康的新型培训策略。一种多解决分析技术,即经验小波变换,用于分解频域中的非平稳电压信号。这允许去除健康评估模型的无效组件。变压器神经网络用作模型主链,损失函数旨在描述容量降解行为,假设在大多数操作条件下LIBS中的降解是不可避免且不可逆转的。结果表明,该模型可以通过分析从同一LIB单元的各个时间间隔分析电压和电流曲线的序列来学习老化特征。所提出的方法成功地应用于斯坦福大学LIB老化数据集,该数据集源自电动汽车实际驾驶配置文件。值得注意的是,这种方法在评估的健康指数和实际容量降解之间达到了平均相关系数为0.9,这表明其在捕获LIB健康降解方面的功效。这项研究强调了使用未标记的LIB数据训练深神经网络的可行性,提供了具有成本效益的手段并释放了测量信息的潜力。
全稳态电池有可能提高锂离子电池的安全性,能量和功率密度。但是,刚性固体接口的有限稳定性仍然是一个关键挑战。在高温烧结和电化学循环期间,阴极/电解质界面特别容易降解,形成了二级相,从而阻碍电荷运输并限制细胞性能。对这些阶段的实验分析是具有挑战性的,因为它们产生了对典型特征技术敏感的薄电阻膜。在这项研究中,我们使用结构分辨的电化学模拟来研究电阻阶段在阴极/电解质界面对细胞性能的影响并确定显性降解机制。我们使用一种新型的电阻膜模型扩展了模拟框架,该模型根据相间特性说明了界面处的额外电荷传递电阻。我们的方法将连续模拟与密度功能理论和实验数据的见解相结合,包括次级离子质谱测量。这使我们首次评估了电阻膜对全细胞性能降解的影响。
塑料废物的连续积累是人类活动在地球上最大的环境后果之一,需要紧急解决。许多在工业和学术界的研究人员都对化学回收塑料废物表示了值得称赞的效果,主要集中于聚元和多植物,因为这些量代表了最大的体积。然而,另一种重要的合成聚合物,即聚乙烯和硅酮,已经逃脱出了焦点。因此,需要进行文献综述,以介绍其化学降解中最新的学术和工业进步。本综述中总结的研究旨在实现联合国可持续发展目标:负责任的消费和生产,可持续城市和社区,水下的生活,土地上的生活和气候行动。
保持弹性是系统优雅降级的能力。在现有的优雅降级研究中,大多数研究主要关注的是导致降级的技术原因,这限制了对空中交通管制降级原因以及实现优雅降级的预防和缓解策略的生态学有效理解。当前的研究旨在通过调查空中交通管制降级的原因(包括技术、环境和人类操作员)以及这些原因之间的潜在相互作用来解决这一研究空白。12 名退休管制员参加了半结构化访谈,重点关注降级原因和缓解策略的先前经验。研究结果提供了对空中交通管制降级原因的理解,以及缓和原因和系统影响之间关系的预防和缓解策略。研究结果证实,原因似乎相互作用,对整个系统性能产生复合的多重影响。研究结果还揭示了用于缓和原因对系统的影响的预防和缓解策略。为了从生态学角度有效理解退化的原因,并制定有效的预防或缓解策略,必须确定多种类别的原因及其之间的相互作用。研究结果对未来空气设计师具有重要意义
https://doi.org/10.26434/chemrxiv-2022-8hnrh-v2 ORCID:https://orcid.org/0000-0002-5449-2253 内容未经 ChemRxiv 同行评审。许可证:CC BY-NC-ND 4.0