目前,基于时期的晚期氧化过程由于其在去除水性培养基的某些持续污染物(染料,氯和氮和氮的有机化合物29-33)方面引起了很多关注。与传统的氧化剂(例如过氧化氢和硫酸盐)相比,Pe-ryodates具有热稳定性,对于存储和运输32。氧化的主要缺点是其高选择性。这降低了含有不同类别的有机量的废水处理的效率。时期主要用于氧化具有阴影基(–OH,–CHO,= CO或–COOH)的化合物,以醛或酮的结构34。激活时期以降低周期氧化的选择性。区分了以下周期激活方法:通过紫外线辐射(光解)35-37,光催化激活38、39,热激活40、41,在美国领域的激活(SON解析)42、43,Microwaves 44,由Microwaves 44,由Microwaves 44,由氢Perogy Perox-indience及其构造29–3-31,通过Transe-29-3-3-3-3-3-3-19-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3 ,通过金属纳米颗粒48-50,碳基材料51,52。
最近,富含Ni的过渡金属氧化物(Lini X Mn Y Co Z O 2 Ni-Rich NMC,X $ 0.7)已获得对锂离子电池(LIB)的兴趣,主要是由于它们的高特征率较高的c速率(最高220 mA H G-G-g-1)和较低的成本。1,2 LINI 0.8 CO 0.1 Mn 0.1 O 2(NMC811)和其他富含Ni的层次氧化物的发展使它们可以在电动汽车Libs中用作阴极材料。3传统上,NMC811电极是使用N-甲基-2-吡咯烷酮(NMP)溶剂产生的,该溶剂既有毒又昂贵。4为了追求NMC811电极的更可持续和绿色的生产,已经研究了水基加工。但是,这带来了挑战。5 - 7例如,在水加工过程中,可以去除颗粒表面上的碳酸锂残留物。8然而,据报道,富含Ni的NMC材料可以与水反应
图2。距离和方向依赖性的选择性和Cyclin D1-CDK4/6复合物的降解。(a)DTAC距离库的示意图。(b)Western印迹(WB)分析显示,在用指定的DTAC变体以指定浓度处理的U-251细胞中细胞周期蛋白D1和CDK4/6降解14小时。结果代表了三个独立实验。(c)与距离依赖性DTAC治疗后对照组相比,相对细胞周期蛋白D1,CDK4和CDK6水平的定量。显示的数据是三个独立实验的平均值±SD。(d)DTAC方向库的示意图。(e)WB分析显示,在指定浓度的U-251细胞中,用指定的方向变体(DTAC-V5至DTAC-V9)处理的U-251细胞中的细胞周期蛋白D1和CDK4/6降解,持续14小时。结果代表了三个独立实验。(f)与对照组相比,用方向依赖性DTAC进行对照组进行了相对细胞周期蛋白D1,CDK4和CDK6水平的定量。显示的数据是三个独立实验的平均值±SD。
本篇综述探讨了靶向蛋白质降解 (TPD) 这一新兴领域及其在神经科学和临床开发中的有希望的应用。TPD 提供了调节蛋白质水平的创新策略,代表了小分子药物发现和治疗干预的范式转变。重要的是,小分子蛋白质降解剂专门针对中枢神经系统细胞并去除致病蛋白质,而不存在基因组和基于抗体的模式的药物输送挑战。在这里,我们回顾了 TPD 技术的最新进展,重点介绍了具有邻近诱导降解事件驱动和迭代药理学的蛋白水解靶向嵌合体 (PROTAC) 蛋白质降解剂分子,提供了在神经科学研究中的应用,并讨论了将 TPD 转化为临床环境的巨大潜力。
$ evwudfw -$ q hvvhqwldo frpsrqhqw ri xvlqj hohfwulf prelolw \ lv d. zklfk lv xvhg wr lpsuryh edwwhu \ txdolw \ txdolw \ txdolw \ dqg jxdudqwhhoh vdih vdih vdih rshhh rshudlrq ed hhudlrq edrq edrq edrq edrq edrq edrq ed hhh iDlrq 7 hofq 7 frrq ed hod Dqglplvh Srwhqwldoo \ GDQJHURXV VLWXDWLRRQV D The Surshuo \ LQ Wkh LQWHQGGGG DSSSOLFDWLRRQ LV UHTXLUHG, Q WhPV Ri Olihwlph Wkh Vkhoi VWRudjH Wlph Ru FDOHQGDU DJHLQJ GLVFKDUJH UDWH IRU SULPDU \ FHOOV LV FUXFLDO Ehfdxvh lw ghwhuplqhv krz orqj \ rx Fdq Nhs Wkh FHoo LQ VWRudJH EHIRUH XVLQJ LW) Ru Vhfrqdu \ Ru Uhfkdujdeoh FHOV ERWK FDOHQGDU DJHLQJ DQG F \ FoH Djhlqj Duh Ri Lqwhuhvw 7KH FDOHQGDU DJHLQJ Zloo Vkrz Krz Wkh Fdsdflw \ Ghwhulrudwhv Ryhu Wlph Hyhq Zkhq Wkh Edwhu \ FHoo LV Qr LQ XVH 7KH F \ FOH Djhlqj zloo vkrz krz pdq \ f \ fohv wkh fdq surgxfh dw d sduwlfxodu fkdujh DQG GLVFKDUJH UDWH %HIRUH Wkh FDSDFLW \ GHFUHDVHG WR RI WKH LKLWLDO $ k Ydoxh Zkhq qhz dq hqhuj \ fhoo zrxog odvw iru frpsohwh f fohv dqg d srzhu fhoo fhoo iru frpsohwh f fohv div div>
石墨阳极上的锂镀层会显著降低电池容量、引发内部短路以及加剧锂离子电池的热失控。锂镀层的非侵入式检测方法对于锂离子电池的安全可靠运行至关重要。本研究提出了一种基于物理的伪二维 (P2D) 模型,该模型结合了锂镀层和剥离反应,以描述商用 18650 圆柱形电池在高电流速率和低温下的电化学行为,电池采用石墨和 LiFePO4 (LFP) 电极。
M. Shafana Farveen·R. R. Narayanan( *)基因工程系,工程技术学院生物工程学院,工程技术学院(CET),SRM科学技术学院(CET),Kattankulathur,Kattankulathur,Kattankulathur
聚氯乙烯的顽固性在生产和处置过程中引起了重大环境挑战。这项研究旨在评估从塑料生产工厂中的洗涤池分离到生物降解聚氯化物(PVC)的真菌的能力。在60天内,将隔离的真菌与Bushnell Haas培养基中的塑料一起孵育。这些菌株被鉴定为Coriolopsis gallica(F1),尼日尔曲霉(F2)和曲霉(F3)。孵育后,选择了三种方法:傅立叶变换红外(FTIR)分析,气相色谱 - 质谱(GC-MS)和减肥实验,以确定PVC的生物降解。与对照相比,FTIR分析表明峰变化,消失和形成了已处理的PVC的新键。GC-MS分析揭示了PVC分解过程中羧酸,酒精,硝酸盐和新化合物的形成。微生物菌株F1,F2,F3和真菌联盟(FC)的减肥实验的结果分别为19、25.3、23.6和52.6%。FC是通过组合所有三种真菌分离株来制备的。本研究得出的结论是,这些孤立的真菌菌株具有PVC塑料部分生物降解的潜力。尽管如此,结果表明真菌财团在PVC在水性环境中的降解中起着重要作用。
这项研究提出了一种通过使用水热合成的铁(Fe)和钛(Fe)和钛(Ti)离子掺杂的方法来增强氧化锶(SRO)纳米颗粒(NP)的光催化特性。使用各种光谱和微观技术来表征材料,以确保对其结构和组成的准确分析。对甲基橙色染料降解的AS合成材料的光催化效率,在90分钟内使用3%掺杂材料在90分钟内取消了约98%。发现降解效率取决于几个因素,包括pH,初始染料浓度和催化剂剂量。最佳条件被确定为pH值为4,初始染料浓度为20 mg/L,催化剂剂量为150 mg。这些发现表明,Fe/Ti编码的SRO纳米颗粒在环境清理过程中的应用中具有很大的潜力,尤其是在有机污染物的降解中。该研究提供了对掺杂纳米颗粒在光催化中的合成和应用的宝贵见解,突出了它们的效率以及优化反应条件以最大程度地提高性能的重要性。
通过引入损害环境整体功能的组成部分,工业化和全球化的进步一直在恶化性质。塑料和重金属被广泛融合到我们的日常生活中,生产和消费都会产生最终处置的废物,这些废物无法充分管理。在目前的工作中,研究了从湿地沉积物中分离出的天然微生物介导的两种生物修复机制。已经报道了在这些地点的两种污染物的存在。根据细菌根据其形态和代谢特征分组。选择用于进一步测试的细菌的决定性标准是生物膜形成。据报道,这种能力是塑料生物降解的第一步。评估了表现出较高生物膜形成的最佳5种细菌的生物降解能力,并且在单独的系统中,它们在不同的铬浓度下生长并将重金属生长到无害形式的能力。选择了三种表现最好的细菌来评估其在包含两种污染物的批处理系统中的生长。聚丙烯是在既定条件下生物降解的,结果表明,两种造成这种降解的细菌属于骨pen虫属,而第三个细菌属于溶质性。这些属据报道为聚丙烯生物降解剂,但不存在其他污染物。这项工作中提出的结果可能是新研究的起点,该研究将使未来在生物修复过程中污染环境中使用本地微生物。