转移RNA动力学通过调节密码子特异性信使RNA翻译有助于癌症的发展。特定的氨基酰基-TRNA合成酶可以促进或抑制肿瘤发生。在这里我们表明valine氨基酰基-TRNA合成酶(VARS)是密码子偏置翻译重编程的关键参与者,该重编程是由于对靶向(MAPK)疗法在黑色素瘤中的抗性(MAPK)。患者衍生的MAPK治疗耐药性黑色素瘤中的蛋白质组会重新布线,偏向于valine的使用,并且与valine cognate trnas的上调以及VARS的表达和活性相吻合。引人注目的是,VAR敲低重新敏感了MAPK-耐药的患者衍生的黑色素瘤体外和体内。从机械上讲,VARS调节了富含Valine的转录本的使者RNA翻译,其中羟基酰基-COA脱氢酶mRNA编码用于脂肪酸氧化中的关键酶。耐药性黑色素瘤培养物依赖于脂肪酸氧化和羟基乙酰-COA脱氢酶在MAPK治疗后的生存。一起,我们的数据表明,VAR可能代表了治疗耐药性黑色素瘤的有吸引力的治疗靶点。
≥3级治疗急性不良事件(TEAES)在32例(25.4%)的苏格莱尼患者和15例(24.2%)的安慰剂患者中报道了。频繁的(≥20%的苏维替尼)茶是上呼吸道感染(28.6%vs 9.7%),Covid-19感染(23.8%vs 12.9%),血乳酸脱氢酶增加了
图 3 (A) 在发现数据集 (deCODE) 中,基因预测的 T2D 与循环蛋白质水平之间的 MR 关联的火山图。标记蛋白质是 464 种发现的蛋白质中的 69 种,FDR <0.05,在 UKB-PPP 和 Fenland 数据集中方向一致且保持名义显著 (p < 0.05)。 (B) 使用来自 UKB-PPP 和 Fenland 的蛋白质数据复制的关联热图。在热图中,p 值 <0.05 但 FDR 校正的 p 值 ≥ 0.05 的关联标记为 *,而 FDR 校正的 p 值 <0.05 标记为 **。FDR 在每个数据集的所有蛋白质中都表现出来。ADH1B,酒精脱氢酶 1B;ADH4,酒精脱氢酶 4;ENPP7,外核苷酸焦磷酸酶/磷酸二酯酶家族成员 7; EPHA1,肝配体 A 型受体 1;FDR,错误发现率;GI,胃肠道;GUSB,β-葡萄糖醛酸酶;INSL5,胰岛素样肽 INSL5;NCAN,神经胶质蛋白核心蛋白;SULT2A1,胆汁盐磺基转移酶;T2D,2 型糖尿病;TNFSF12,肿瘤坏死因子配体超家族成员 12。
摘要:糖尿病是一种严重危害人类健康的慢性代谢疾病。各种研究都强调了维持大脑充足的葡萄糖供应并随后保障大脑葡萄糖代谢的重要性。本研究的目的是阐明和揭示长期高血糖背景下反复低血糖引起的代谢改变,以进一步了解除大脑损害之外的影响。为此,化学诱发的糖尿病大鼠经历了反复胰岛素诱发的低血糖发作。通过分光光度法测量了大脑皮层组织提取物或分离的线粒体中糖酵解、戊糖磷酸途径和克雷布斯循环的关键酶的活性。使用蛋白质印迹分析来测定葡萄糖和单羧酸转运蛋白的蛋白质含量,它们是胰岛素信号通路和线粒体生物合成和动力学的参与者。我们观察到复发性低血糖会上调线粒体己糖激酶和克雷布斯循环酶(即丙酮酸脱氢酶、α-酮戊二酸脱氢酶和琥珀酸脱氢酶)的活性以及线粒体转录因子 A (TFAM) 的蛋白水平。这两种损伤都会增加核因子红细胞 2 相关因子 2 (NRF2) 的蛋白含量,并引起线粒体动力学的不同影响。发现胰岛素信号下游通路被下调,并且发现糖原合酶激酶 3 beta (GSK3 β ) 通过 Ser9 磷酸化降低和 Y216 磷酸化增加而被激活。有趣的是,低血糖和/或高血糖不会导致在神经元可塑性和记忆中起关键作用的 cAMP 反应元件结合蛋白 (CREB) 水平发生变化。这些发现提供了实验证据,表明在慢性高血糖的情况下,复发性低血糖能够引发大脑皮层的协调适应性反应,最终有助于维持脑细胞健康。
脂肪酸氧化缺陷(FAO 的)中链酰基辅酶 A 脱氢酶缺乏症(中链 A-seal Co-A Dee-HIGH-dra-gen-AZE 缺乏症 - MCAD)是一种脂肪酸代谢障碍。患有 MCAD 的婴儿和儿童生病或长期禁食时,血糖会变得非常低,并且有发生“代谢危机”的风险。代谢危机可能导致癫痫发作、呼吸困难和心脏骤停。这些可能会导致严重的脑损伤或死亡。但是,筛查可以在症状出现之前提供诊断。然后,父母可以预防禁食期,并知道何时寻求早期医疗护理,以防止危机。可以在婴儿的饮食中添加特殊的膳食补充剂,以帮助预防问题。筛查的其他脂肪酸缺陷包括:• 肉碱吸收缺陷 (CUD) • 长链羟基辅酶 A 脱氢酶缺乏症 (LCHAD) • 三功能蛋白质缺乏症 (TFP) • 极长链酰基辅酶 A 脱氢酶缺乏症 (VLCAD)
div> dutasteride 5-α还原酶抑制剂丁那碱5-α还原酶抑制剂Zileuton 5-脂氧合酶抑制剂botulinum botulinum botulinum botulinum毒素A型乙酰胆碱释放抑制剂抑制剂利马布修素蛋白酶利马布素毒素, RIVASTIGMINE acetylcholinesterase inhibitor DACTINOMYCIN actinomycin VORETIGENE NEPARVOVEC adeno-associated virus vector-based gene therapy ADENOSINE adenosine receptor agonist REGADENOSON adenosine receptor agonist BEMPEDOIC ACID adenosine triphosphate-citrate lyase (ACL) inhibitor AMINOGLUTETHIMIDE adrenal steroid synthesis inhibitor METYRAPONE adrenal steroid synthesis inhibitor DIPIVEFRIN adrenergic agonist EPINASTINE adrenergic agonist HYDROXYAMPHETAMINE adrenergic agonist CORTICOTROPIN adrenocorticotropic hormone COSYNTROPIN adrenocorticotropic hormone DISULFIRAM aldehyde dehydrogenase inhibitor EPLERENONE aldosterone antagonist SPIRONOLACTONE aldosterone antagonist COLCHICINE alkaloid ALTRETAMINE alkylating drug BENDAMUSTINE alkylating drug BUSULFAN alkylating drug CARMUSTINE alkylating drug CHLORAMBUCIL alkylating drug CYCLOPHOSPHAMIDE alkylating drug CYCLOPHOSPHAMIDE ANHYDROUS
丙酮酸脱氢酶B(PDHB)是丙酮酸脱氢酶复合物的重要组成部分,与改变肿瘤代谢和促进恶性肿瘤有关。然而,PDHB对肝细胞癌(HCC)代谢重编程的特定影响及其在肿瘤进展中的作用仍有待阐明。在我们的研究中,我们发现了HCC内PDHB表达的明显升高,与延迟的肿瘤分期,肿瘤分级升高和预后结局降低相关。PDHB过表达驱动体外和体内肿瘤的生长和转移。从机械上讲,PDHB通过与SLC2A1,GPI和PKM2的启动子区域结合,介导了代谢重编程,从而促进了糖酵解相关的基因转录,从而有助于HCC索拉非尼替尼耐药。另外,同肌固定会是PDHB的靶向抑制剂,并对HCC发挥抗肿瘤作用。在小鼠异种移植模型中,同肌苷和索拉非尼的组合比单独的索拉非尼表现出明显更好的作用。总而言之,我们的研究证实了PDHB为一种能够预测HCC肿瘤进展的致癌耐药性相关基因。PDHB和等肌苷可能是肝癌靶向和联合疗法的潜在途径。
最近的发现 - 治疗可以防止患有该疾病的牛犊中致命症状的复发。它防止了新生儿死亡,归一化的生长,恢复了受影响基因的协调表达,并稳定了小腿和小鼠中的生物标志物。枫糖浆尿液疾病(MSUD) - 这是一种罕见的遗传疾病,其特征是酶复合物缺乏(分支链α-酮酸脱氢酶)。分支链α-酮酸脱氢酶需要分解(代谢)体内的3个分支链氨基酸(BCAAS)亮氨酸,异亮氨酸和瓣膜。这种代谢衰竭的结果是,所有3个BCAA及其许多有毒副产品(特别是它们各自的有机酸)都异常积累。在经典,严重的MSUD形式中,BCAA的血浆浓度在出生后的几个小时内开始上升。如果未经治疗,症状通常会在生命的最初24-48小时内出现。类型 - 经典类型,中间类型,间歇性类型以及可能是硫胺素反应类型。原因 - 当BCKDHA,BCKDHB或DBT基因的突变形式从父母双方继承时。症状 - 神经功能障碍增加的非特异性症状,包括嗜睡,易怒和喂养不良,很快
适应慢性缺氧是通过蛋白质表达的变化而发生的,蛋白质表达受到低氧诱导因子1α(HIF1α)的控制,对于癌细胞存活是必要的。然而,在HIF1α介导的转录程序完全确定之前,使癌细胞能够适应早期缺氧的机制仍然很少了解。在这里,我们在人类乳腺癌细胞中表明,在缺氧暴露3小时内,糖酵解液以HIF1α非依赖性方式增加,但受NAD +可用性的限制。早期缺氧的糖酵解ATP维持和细胞存活依赖于储备乳酸脱氢酶A的能力以及谷氨酸 - 氧化甲酸乳凝集酸酯酸酯酸酯酶1(GOT1)的活性,该酶是一种燃料的酶,该酶燃料母体脱氢酶1(MDH1)衍生的NAD NAD +。此外,GOT1保持较低的α-酮戊二酸水平,从而限制了早期缺氧中HIF1α稳定的丙酰羟化酶活性,并在后期缺氧中启用强大的HIF1α靶基因表达。我们的发现表明,在北莫西亚中,多种酶系统将细胞保持在启动状态下,准备支持增加糖酵解的糖酵解和HIF1α稳定在氧气限制下,直到其他需要更多时间的自适应过程已完全确定为止。
从氧化磷酸化(OXPHOS)到糖酵解的代谢转移(称为Warburg效应)是许多癌症的特征。它使癌细胞在低氧肿瘤微环境中具有生存优势,并保护它们免受氧化损伤和凋亡的细胞毒性作用。这种代谢转移的主要调节剂是丙酮酸脱氢酶复合物和丙酮酸脱氢酶激酶激酶(PDK)同工型1-4。已知PDK在几种癌症中过表达,并且与不良的预后和耐药性有关。虽然PDK1 - 3的表达是组织特定的,但PDK4表达取决于整个生物体的能量状态。与其他PDK同工型相比,不仅是致癌性,而且还报道了PDK4的肿瘤抑制功能。在肿瘤中拟合高的肿瘤和高脂肪酸合成,PDK4可以具有保护作用。前列腺癌是男性最常见的癌症的情况,使PDK4成为有趣的治疗靶点。大多数工作都集中在具有高糖酵解活性的肿瘤中的PDK上,但很少研究PDK4具有保护性并且非常需要的情况。