功能序列的缺失被认为是分子进化的基本机制 1,2 。灵长类动物的比较遗传学研究 2,3 已经发现了数千个人类特异性缺失 (hDels),并且已经使用报告基因检测 4 评估了短 (≤31 个碱基对) hDels 的顺式调控潜力。然而,结构变体大小 (≥50 个碱基对) 的 hDels 如何影响其原生基因组环境中的分子和细胞过程仍未得到探索。在这里,我们设计了针对 6,358 个 hDels 中 7.2 兆碱基序列的单向导 RNA 基因组规模文库,并提出了一种系统的 CRISPR 干扰 (CRISPRi) 筛选方法来识别改变黑猩猩多能干细胞细胞增殖的 hDels。通过将 hDels 与染色质状态特征进行交叉并执行单细胞 CRISPRi(Perturb-seq)来识别它们的顺式和反式调控靶基因,我们发现了 20 个控制基因表达的 hDels。我们重点介绍了两个 hDels,hDel_2247 和 hDel_585,它们在脑中具有组织特异性活性。我们的研究结果揭示了人类谱系中丢失的序列的分子和细胞作用,并建立了一个功能性地询问人类特异性遗传变异的框架。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月1日。 https://doi.org/10.1101/2023.10.28.564543 doi:Biorxiv Preprint
国家指南建议对所有孕妇进行胎儿染色体异常筛查,其中大多数是非整倍体,即染色体数目异常。三体综合征是涉及 1 条染色体的 3 个拷贝的非整倍体。21、18 和 13 三体是存活至出生的最常见的胎儿非整倍体形式。使用母体血清和胎儿超声对这些疾病进行标准筛查存在许多局限性。无创产前筛查 (NIPS) 分析母体血清中的胎儿无细胞 DNA (cfDNA) 是传统血清筛查的潜在补充或替代方法。还提出了使用胎儿 cfDNA 的 NIPS 来筛查微缺失。已经有人提议使用胎儿 cfDNA 进行双胞胎合子的产前检测,以便为双胞胎输血综合征和其他单绒毛膜双胞胎相关异常的早期监测提供信息。
迄今为止发表的关于胎儿非整倍性无创产前筛查的研究报告了罕见但偶尔会误报。假阳性发现与包括胎盘镶嵌,消失双胞胎和母体恶性肿瘤在内的因素有关。诊断测试对于确认无细胞的胎儿DNA测试是必要的,并且管理决策不应仅基于无细胞的胎儿DNA测试的结果。美国产科医生和妇科医生进一步建议将无细胞的胎儿DNA测试结果转介,以进行遗传咨询并提供超声评估和诊断测试,因为无细胞的胎儿DNA测试结果被引用,因为“无调用”的发现与Aneuplodiely Aneuploidey的风险增加有关。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年8月26日。 https://doi.org/10.1101/2024.08.26.609494 doi:Biorxiv Preprint
出版商的免责声明。e-发布在印刷前对于快速传播科学而言越来越重要。Haematologica是已完成常规同行评审并已被接受出版的早期手稿的电子发布PDF文件。出版已由作者批准。在印刷之前发行电子版本后,手稿将进行技术和英语编辑,排版,证明校正和呈现以供作者的最终批准;然后,手稿的最终版本将出现在日记的常规期刊中。所有适用于该期刊的法律免责声明也与该生产过程有关。
重离子束是一种电离辐射,它已作为一种强诱变剂应用于植物育种,并且是一种诱导大规模缺失和染色体重排的有前途的工具。重离子辐照的有效性可以用线性能量转移 (LET;keV µm -1 ) 来解释。不同 LET 值的重离子束会诱发不同类型和大小的突变。已有研究表明,缺失大小随 LET 值的增加而增大,较高的 LET 辐射会诱发复杂的染色体重排。在本研究中,我们将在拟南芥突变体中检测到的重离子束诱导的缺失定位到其基因组中。我们发现,不同的 LET(100 至 290 keV mm -1 )之间的缺失大小相似,其上限受必需基因分布的影响,并且检测到的染色体重排避免了破坏必需基因。我们还重点研究了串联基因 (TAG),即基因组中两个或多个同源基因相邻。我们的结果表明,100 keV µm -1 的 LET 足以破坏 TAG,并且必需基因的分布会强烈影响与其重叠的突变的遗传性。我们的研究结果提供了拟南芥基因组中大量缺失诱导的基因组视图。
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。