1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
在第二次示威期间的批准后,该示范于2017年晚些时候进行了修订,以纳入综合药物使用障碍 /阿片类药物使用障碍治疗计划的权力。在2019年再次修订,以允许有限的医疗补助报销儿童和家庭的家庭探视服务,并支持在新泽西州公共监护人办公室拘留下为某些受益人的加快入学过程实施。此外,在2020年,新泽西州获得了紧急临时权力,以修改示威活动的某些与HCBS相关的规定,以支持该州对COVID-19-19的大流行的反应。在撰写本文时,进一步的修订请求,包括将产后覆盖范围扩展到出生后12个月,以及为在电子健康记录(EHR)实施目标的SUD提供者中付出的额外资金,即在CMS中待定。
待压缩的图像首先存储在外部 DDR 内存中,然后使用 DMA 引擎从内存中读取并提供给 CCSDS 核心。同时,压缩数据被存储回外部内存中,稍后使用 SpW 或 SpFi VC0 (RMAP) 读取。
航天器被敲定,随后是一个迭代过程,在所选媒介中定制艺术品以重现功能:高和低发射胶带和Kapton Tape。将艺术品集成到狭窄的表面百分比覆盖范围和允许的材料选择中是艺术家和工程师的独特而令人兴奋的学习体验。
本文提供了Alpha的概述,Alpha是一项快速发展的低成本立方体任务,可验证高度逆转型材料以进行轻型推进。由康奈尔大学太空系统设计工作室的学生设计,集成和测试,该任务展示了许多关键技术,这些技术使下一代能力能够进行太空探索。尤其是本文侧重于芯片组的新应用(革兰氏量表上的芯片技术)作为验证Alpha的帆轨道和态度动态的一种手段。其他创新包括一个完全3D打印的结构,以启用快速,便宜的原型制作,这是一种围栏虹膜调制解调器,绕开了对地面电台无线电设备的需求,反式式流动式帆材材料,可提供激光照明的更确定性的动力,并仅利用态度控制态度和态度控制态度控制态度和巨镜控制。除了这些近期的技术示范外,Alpha是Space全息图的第一个展览之一,该媒介在星际旅行中的多个角色中表现出长期的承诺。
摘要:背景:I型I型Hurler(MPS1-H)是由于IDUA基因的功能丧失突变而导致的严重遗传溶酶体储存障碍。随后的α -iduronidase酶的完全缺乏率直接导致溶酶体中糖胺聚糖(GAG)的进行性积累,从而影响许多组织的功能。因此,MPS1的特征是系统性症状(多器官功能障碍),包括呼吸道和心脏功能障碍,骨骼异常和早期致命神经变性。方法:为了了解MPS1神经病理学的基础机制,我们从两个IDUA等位基因的MPS1-H患者中产生了诱导的多能干细胞(IPSC)。为了避免因IPSC的不同遗传背景而导致的可变性,我们通过通过慢虫方法挽救IDUA表达来建立了IPENIC Control IPSC线。结果:在神经差异后观察到MPS1 -H和IDUA校正的同基因对照之间的明显差异。刮擦测定法显示了MPS1-H细胞的强迁移缺陷。此外,IDUA缺乏对基因表达的影响很大(FDR <0.05的340个基因)。结论:我们的结果表明,迄今为止,溶酶体降解,基因表达和神经运动之间的联系尚不清楚,这可能至少部分解释了MPS1-H患者的表型。
这是作者的同行评审并被接受的稿件。但是,一旦编辑和排版完成,在线记录版本将与此版本不同。请引用本文 DOI:10.1119/10.0002169
第二,在入门完成后,可以分析该系统以更好地了解有关贝斯的安全性,性能和耐力可能引起的担忧。这些相同的见解可用于提高系统在将来的操作中的性能。该计划的关键目的之一是验证Powerup关于安全性提示的提示,以防止WPO BESS系统中的热失控,并验证围绕安全性和寿命的电池制造商提出的索赔。简而言之,NYPA希望排除由根本原因Insight®能够识别的根源可能导致的安全性甚至性能问题。
“在最近推进器资格测试期间,在NASA的Glenn研究中心的真空室内看到了高级电力推进系统(AEPS)的蓝色。这个12千瓦的大厅推进器是生产中最强大的电推进推进器,这对于月球及其他地区的未来科学和探索任务至关重要。”