自2019年3月被世卫组织指定为大流行以来,SARS-COV-2感染了超过5.4亿人,并于2022年6月造成600万人死亡(1)。此外,该病毒继续突变,使新变体出现(2)。尽管当前使用SARS-COV-2疫苗可以控制COVID-19的感染和死亡率,但包括元分析在内的各种研究表明,在疫苗接种后6个月内,疫苗效率下降了多达30%,而疫苗的能力降低了疫苗对出现的SARS-COV-2-2变量的疫苗能力(3,3,4)。由于缺乏各种因素引起的最佳疫苗接种覆盖范围以及公众对当前的SARS-COV-2疫苗的拒绝(5),问题也加剧了问题(5)。因此,仍然有必要开发可持续很长时间,有效抵抗各种变体并增加疫苗接种覆盖范围和公众接受的疫苗。基于树突细胞(DC)的开发 - 基于疫苗是一种创新的疫苗,可以克服现有问题。DC - 基于疫苗的疫苗利用DC作为抗原呈递细胞(APC)的能力诱导以T细胞免疫为导向的人类免疫系统(6)。使用离体方法的自体DC的开发可以是一种有效的方法,因为它可以确保所使用的DC的质量,简化发生DC成熟过程和发生的抗原呈递,并提高疫苗接种的安全性,包括具有疫苗接种疫苗的受试者的受试者。此外,自体疫苗有可能增加公众对疫苗接种的接受(7)。在先前的研究中,临床前和II期临床试验的临床前和临时分析结果都发现该疫苗具有良好的潜力。 在短期观察中(3个月),在I期和II期临床试验的受试者中未发现严重的不良事件(SAE)。 此外,装有SARS COV-2 S蛋白(AV-COVID-19或Nusantara疫苗)的自体DC - 基于自体DC - 可以很好地诱导足够的T细胞免疫。 疫苗还可以形成抗体反应(8)。 本文将在1年观察期间介绍安全结果。 还分析了DC - 基于DC的效能潜力。在先前的研究中,临床前和II期临床试验的临床前和临时分析结果都发现该疫苗具有良好的潜力。在短期观察中(3个月),在I期和II期临床试验的受试者中未发现严重的不良事件(SAE)。此外,装有SARS COV-2 S蛋白(AV-COVID-19或Nusantara疫苗)的自体DC - 基于自体DC - 可以很好地诱导足够的T细胞免疫。疫苗还可以形成抗体反应(8)。本文将在1年观察期间介绍安全结果。还分析了DC - 基于DC的效能潜力。
自 2019 年 3 月被世界卫生组织指定为大流行病以来,SARS-CoV-2 已感染超过 5.4 亿人,并在 2022 年 6 月造成 600 万人死亡(1)。此外,这种病毒还在不断变异,出现新的变种(2)。虽然目前使用 SARS-CoV-2 疫苗可以控制 COVID-19 感染和死亡率,但包括荟萃分析在内的多项研究表明,接种疫苗后 6 个月内疫苗效力下降高达 30%,疫苗对抗新出现的 SARS-CoV-2 变种的能力也会降低(3,4)。各种因素导致的疫苗接种覆盖率不理想以及公众对现有 SARS-CoV-2 疫苗的排斥也加剧了这一问题(5)。因此,仍有必要研发能够长期持续、对各种变种都有效、提高疫苗接种覆盖率和公众接受度的疫苗。开发基于树突状细胞 (DC) 的疫苗是一种可以克服现有问题的创新型疫苗。基于 DC 的疫苗利用 DC 作为抗原呈递细胞 (APC) 的能力来诱导以 T 细胞免疫为导向的人体免疫系统 (6)。用离体方法开发基于自体 DC 的疫苗可能是一种有效的方法,因为它可以确保所用 DC 的质量,简化 DC 成熟过程和发生的抗原呈递,并提高疫苗接种的安全性,包括对于有疫苗接种禁忌症的合并症受试者。此外,自体疫苗有可能提高公众对疫苗接种的接受度 (7)。在之前的研究中,I 期和 II 期临床试验的临床前和中期分析结果均发现这种疫苗具有良好的潜力。在短期观察中(3 个月),在 I 期和 II 期临床试验的受试者中未发现严重不良事件 (SAE)。此外,携带 SARS CoV-2 S 蛋白的自体树突状细胞疫苗(AV-COVID-19 或 Nusantara 疫苗)可以很好地诱导足够的 T 细胞免疫。该疫苗还可以形成抗体反应 (8)。本文将介绍 1 年观察期内的安全性结果。还分析了树突状细胞疫苗的有效性潜力。
三级淋巴结构 (TLS) 是免疫细胞(例如 T 细胞、B 细胞和树突状细胞 (DC) 以及成纤维细胞)的组织聚集体,是在出生后响应细胞因子和趋化因子的信号而形成的。TLS 功能的核心是 DC,它是协调适应性免疫反应的专业抗原呈递细胞 (APC),可分为具有特定功能和标记的不同亚群。在本文中,我们回顾了不同 DC 亚群对癌症和自身免疫(免疫反应的两个对立面)中的 TLS 功能的贡献的当前数据。不同的 DC 亚群可见于不同的肿瘤类型,并与癌症预后相关。此外,DC 也存在于自身免疫和炎症条件下的 TLS 中,有助于疾病发展。总体而言,TLS 中 DC 的存在似乎与癌症的良好临床结果有关,而在自身免疫病理中,这些细胞与不良预后有关。因此,分析 TLS 内 DC 的复杂功能非常重要,这不仅有助于我们加强对免疫调节的基本理解,而且也有可能为患有各种病理疾病的患者的特定需求设计创新的临床干预措施。
1 Cordeliers研究中心,由反对癌症联盟,巴黎大学,索邦大学,Inserm U1138,Inserm u1138,法国德国法国大学的INSERM U1138标签; 2个代谢组学和细胞生物学平台,法国维勒维夫古斯塔夫·鲁西癌中心; 3法国维勒纽夫的Gustave Roussy癌症校园。laurence.zitvogel@gustaveroussy.fr。4国家卫生与医学研究所(INSERM)UMR 1015,诊所,标记为法国维勒维夫的癌症结尾。laurence.zitvogel@gustaveroussy.fr。5癌症生物疗法(Biotheris)1428的临床研究中心,法国维勒维夫。laurence.zitvogel@gustaveroussy.fr。6巴黎 - 萨克莱大学,法国Gif-Sur-Yvette。7欧洲医院癌症研究所的生物学系,欧洲医院乔治·庞皮杜,法国巴黎,阿帕斯。
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 12 月 22 日发布。;https://doi.org/10.1101/2020.12.22.423985 doi:bioRxiv 预印本
目前,人们对锂金属电池重新产生兴趣,是因为它具有极高的能量密度,可以满足移动设备对长期自主性的巨大需求(Xiang 等,2019)。锂金属具有 3860 mA hg − 1 的高理论比容量和 -3.04 V(vs. SHE)的最低氧化还原电位,这促使它被用作阳极,取代目前商业化的石墨(理论比容量:374 mA hg − 1)。因此,对锂金属电池、Li-O 2 、Li-S/Se 的研究和开发正在兴起(Abouimrane 等,2012;Bruce、Freunberger、Hardwick 和 Tarascon,2012;Yang、Yin 和 Guo,2015;Yin、Xin、Guo 和 Wan,2013)。垂直锂枝晶的生长会刺穿隔膜,导致短路甚至起火,这是此类电池商业化应用的主要瓶颈(Lu et al., 2015 ; Tarascon & Armand, 2001 ; Wu et al., 2018 )。此外,枝晶的形成会产生“死锂”和特定的固体电解质界面相 (SEI)(Cheng, Yan, Zhang, Liu, & Zhang, 2018 ),这意味着库仑效率下降并影响循环效率。各种各样的策略(Xu et al., 2014 )与使用兼容
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
本文提出了一种非常快速的数值方法来模拟熔池凝固产生的微观结构,包括柱状枝晶晶粒和从熔体中成核的等轴晶粒的生长竞争。为了减少计算时间,提出了一种升级策略,该策略不是单独考虑每个枝晶,而是根据物理信息确定枝晶生长速度来定义平均凝固前沿。所提出的方法还依赖于枝晶的优选生长方向和有利取向的晶粒标准来确定哪些晶粒在竞争中幸存下来。显著减少自由度总数的关键贡献之一是使用 Voronoi 镶嵌而不是规则网格进行数值实现。结果已与实验数据以及相场和细胞自动机模拟进行了比较。模拟的微观结构与使用细胞自动机获得的微观结构相似,而计算成本却大大降低。此外,还提供了三维模拟的收敛分析,其热条件对应于金属增材制造,以展示如何在实践中使用本研究。
Espinosa-Carrasco 等人最近发表的一篇论文 1 阐明了肿瘤内免疫三联体(由 CD4 + T 细胞、CD8 + T 细胞和树突状细胞 (DC) 组成的独特集群)在介导有效的抗肿瘤反应中的关键作用。这些三联体确保 CD8 + T 细胞通过相同的 DC 介导从 CD4 + T 细胞获得必要的帮助,从而有效地靶向和摧毁癌细胞。该文章的新颖见解表明,重点应从增加免疫细胞数量转移到优化它们在肿瘤微环境中的相互作用。这项开创性的研究不仅强调了 CD4 + T 细胞和 DC 的关键作用,而且突出了肿瘤微环境中免疫细胞亚群之间错综复杂的相互作用。先前的研究已经揭示了 CD4 + T 细胞在支持 CD8 + T 细胞反应中的重要性 2 。肿瘤微环境中免疫细胞的空间定位和相互作用的重要作用也得到了强调 3,4 。过继性 T 细胞疗法的研究表明,同时转移 CD4 + 和 CD8 + T 细胞比单独转移 CD8 + T 细胞可获得更好的治疗效果 2,5 ,因为 CD4 + T 细胞有助于维持 CD8 + T 细胞的效应功能并防止其衰竭。这些研究共同支持了免疫细胞类型(特别是 CD4 + 和 CD8 + T 细胞)之间协调相互作用的要求,以实现有效的抗肿瘤免疫。
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究 IM-T9P1-ASO 在肿瘤中的药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1-ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。
