设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。
摘要 - 锂离子(Li-ion)电池的使用已在各个行业中广泛普及,从供电便携式电子设备到推动电动汽车和支持储能系统。锂离子电池可靠性中的一个核心挑战在于准确预测其剩余使用寿命(RUL),这是积极维护和预测分析的关键措施。本研究提出了一种新颖的方法,该方法利用了多个Denoising模块的功能,每个模块都训练了解决电池数据中通常遇到的特定类型的噪声。具体而言,使用Denoising自动编码器和小波Denoiser用于生成编码/分解表示形式,随后通过专用的自我发明变压器编码来处理。在对NASA和CALCE数据进行了广泛的实验之后,在一组不同的噪声模式下估算了一系列健康指标值。这些数据上报告的错误指标与最近文献中报道的最先进的相当或更好。索引术语 - 验证和健康管理,剩余使用寿命,自动编码器,锂离子电池,变压器,电池健康
为了人类的运气,与小型太阳能相比,太阳能较小。即使这些是个好消息,这也使训练能够建模太阳能活动的机器学习算法具有挑战性。因此,太阳能监视应用程序(包括量)是预测的,因此由于缺乏输入数据而征服。为了克服这个问题,可以利用生成深度学习模型来产生代表太阳活动的合成图像,从而补偿大事件的稀有性。本研究旨在开发一种可以生成太阳的合成图像,具有特定强度的能力。为了实现我们的目标,我们引入了一个脱氧概率模型(DDPM)。我们用SDO航天器上大气图像组件(AIA)仪器进行了精心制作的数据集训练它,该仪器特别是171Å带,该乐队捕获了冠状环,纤维,纤维,浮雕和活动区域的图像。使用Heliophysics事件知识库选择了来自AIA的浮动图像后,采用X射线测量来基于太阳量(a,b,c,m,x)对每个图像进行分类,从而允许对漏水事件进行时间定位。使用群集指标,FRéchetInception距离(FID)和F1分数评估生成模型性能。我们演示了最新的结果,可以产生太阳图像并进行两个使用合成图像的实验。第一个实验训练有监督的分类器以识别这些事件。第二个实验训练基本太阳能是预测指标。我们认为,这只是DDPM与太阳能数据使用的开始。实验证明了其他合成样本对解决不平衡数据集问题的有效性。仍然可以更好地了解太阳能竞赛中的DINOISING DI遇到的概率模型的发电能力是预测,并将其应用于其他深度学习和物理任务,例如AIA到HMI()图像翻译。
多层次支持系统可以追溯到 Deno 和 Mirkin (1977) 的基于数据的决策工作以及美国教育部的报告《处于危险中的国家》(1983)。该框架系统地使用评估数据来高效分配资源,以提高所有学生的学习水平(Burns 和 VanDerHeyden,2006)。一项研究的荟萃分析发现,多层次支持系统可以带来更好的结果,例如更少的儿童被转介并被安排到特殊教育计划中。此外,结果还包括所有学生的成绩分数更高,行为困难减少(Burns、Appleton 和 Stehouwer,2005)。有阅读失败风险的儿童表现出阅读技能的提高(Marston、Muyskens、Lau、Canter,2003;Tilly,2003)。
心血管疾病(CVD)的高流行率要求可访问且具有成本效益的连续心脏监测工具。尽管心电图(ECG)是黄金标准,但连续监测仍然是一个挑战,导致探索光摄影学(PPG),这是一种有希望的但更基本的替代方案,可在消费者可穿戴设备中获得。这个概念最近引发了将PPG转化为ECG信号的兴趣。在这项工作中,我们介绍了区域限制扩散模型(RDDM),这是一种新型扩散模型,旨在捕获ECG的复杂时间动力学。传统的扩散模型,例如deno deno扩散概率模型(DDPM)在捕获整个信号中不可分犯的噪声过程中捕获这种细微差别时面临挑战。我们提出的RDDM通过企业进行了一个新颖的远期过程来克服这种限制,该过程有选择地将噪声添加到ECG信号中的QRS复合物等特定区域(ROI),以及一个反向过程,该过程散布了ROI和非ROI区域的差异。定量实验表明,RDDM可以在少于10个扩散步骤中从PPG产生高保真性ECG,从而使其非常有效且在计算上有效。此外,为了严格验证所产生的ECG信号的有用性,我们引入了心脏桥,这是针对各种心脏相关任务的全面评估基准,包括心率和血压估计,压力分类以及对心房颤动和糖尿病的检测。我们的详尽实验表明,RDDM在心脏座位上实现了最先进的表现。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。
雷达相机3D对象检测旨在与雷达信号与摄像机图像进行交互,以识别感兴趣的对象并定位其相应的3D绑定框。为了克服雷达信号的严重稀疏性和歧义性,我们提出了一个基于概率deno的扩散建模的稳健框架。我们设计了框架,可以在不同的多视图3D检测器上易于实现,而无需在训练或推理过程中使用LiDar Point Clouds。在特定的情况下,我们首先通过开发带有语义嵌入的轻质DENOIS扩散模型来设计框架编码器。其次,我们通过在变压器检测解码器的深度测量处引入重建训练,将查询降解训练开发为3D空间。我们的框架在Nuscenes 3D检测基准上实现了新的最新性能,但与基线检测器相比,计算成本的增加很少。
摘要 - 该纸张利用机器学习算法来预测和分析财务时间序列。该过程始于一个deno的自动编码器,以从主合同价格数据中滤除随机噪声波动。然后,一维卷积会降低过滤数据的维度并提取关键信息。被过滤和降低的价格数据被馈送到GAN网络中,其输出作为完全连接的网络的输入。通过交叉验证,训练了模型以捕获价格波动之前的功能。该模型预测了实时价格序列的重大价格变化的可能性和方向,将交易置于高预测准确性的时刻。经验结果表明,使用自动编码器和卷积来过滤和DENOSIS财务数据,结合gan,实现一定程度的预测性能,验证了机器学习算法的能力,以发现财务序列中的基本模式。
脑电图(EEG)信号在临床医学,脑研究和神经系统障碍研究中是关键的。然而,它们对生理和环境噪声受到污染的敏感性挑战了大脑活动分析的精度。深度学习的进步已经产生了抑制传统方法的欧EEG信号降解技术。在这项研究中,我们部署了保留网络体系结构(用于大型语言模型(LLMS)),用于EEG DENOSINGISENT,利用其强大的功能提取和全面的建模实力。此外,其固有的时间结构对准使保留网络特别适合EEG信号的时间序列性质,为其采用提供了额外的理由。为了将保留网络与EEG信号的一维特征相吻合,我们引入了一种信号嵌入策略,将这些信号重塑为有助于网络处理的二维嵌入空间。这种前卫方法不仅雕刻出EEG DENO的新型轨迹,还增强了我们对脑功能的理解和诊断神经系统疾病的准确性。此外,为了响应深度学习数据集的劳动密集型创建,我们提供了一个标准化的,预处理的数据集,该数据集准备简化该领域中的深度学习进步。