许多行业将 5G 视为数字化转型战略的重要推动因素——但前提是网络能够满足其特定需求;例如,医疗管理的极端安全性。如果实现这一点,他们将能够利用 5G 实现 MBB 以外的更多用途,并帮助改变他们的工作方式和支持客户的方式。这反过来将对英国的生产力和竞争力产生深远影响,并带来重大的社会和经济效益。
我们与 Rocketmine 合作,开创了新的测绘解决方案。Rocketmine 是一家全球无人机数据服务提供商,为多个行业提供跨大洲的全套交钥匙无人机解决方案,包括采矿、农业、工程、可再生能源、安全和医疗等。这项任务是在加纳/西非赤道丛林环境中勘测 6,500 公顷的区域。这种极端的操作环境为我们的 Trinity F90+ VTOL 无人机解决方案与 Qube 240 LiDAR 有效载荷的组合提供了理想的试验平台。茂密的丛林环境对传统的摄影测量测量技术和 RGB 传感器来说是个问题,因为它们无法穿透地形的各个树层。作为 Quantum-Systems 无人机解决方案在该地区首次积极部署,Rocketmines 团队能够率先使用这项突破性技术并快速收集相关数据以完成任务目标。
•对两个图像中的相应像素的搜索如果进行了校准,则两个图像的搜索变得容易一些 - 这意味着,如果两个图像中的同一行中存在一对相应的像素。您从我的讲座24中知道,对于任何给定的像素(i,j)∈I,在另一个图像中必须在另一个图像中对其相应的像素进行搜索。,正如我在第24堂课中所解释的那样,
我们是否充分利用多模式大语模型(MLLM)中视觉编码器的潜力?MLLM最近在多模式理解中的出色表现引起了学术界和行业的广泛关注。在当前的MLLM大鼠种族中,重点似乎主要是语言方面。我们目睹了较大和更高质量的指导数据集的兴起,以及大型LLM的参与。然而,很少关注的注意力指向MLLM使用的视觉信号,通常被认为是冷冻视觉编码器提取的最终高级特征。在本文中,我们介绍了密集的连接器 - 一种简单,有效且插件的视觉语言连接器,通过利用多层视觉特征来显着增强现有MLLM,并以最少的额外计算开销。在此基础上,我们还提出了有效的密集连接器,该连接器的性能与Llava-V1.5相当,只有25%的视觉令牌。此外,我们的模型仅在图像上进行了训练,还展示了视频理解中出色的零拍功能。各种视觉编码器,图像分辨率,训练数据集量表,不同尺寸的LLM(2.7b→70b)以及MLLM的不同架构(e。g。,llava-v1.5,llava-next和mini-gemini)验证了我们方法的多功能性和可扩展性,从而在19个图像和视频基准中实现了最先进的性能。我们希望这项工作将提供宝贵的经验,并成为未来MLLM开发的基本模块。代码可在https://github.com/hjyao00/denseconnector上找到。
• 传感器数量有限,覆盖不完整 • 生理伪影和环境噪声 • 容积传导 • 对深/浅或径向/切向源的敏感度不同 • EEG 中的参考效应
•自然主义驾驶环境下的AV测试需要高的经济和时间成本:安全性关键事件的罕见•密集的深入强化学习学习(D2RL):删除非安全 - 关键态,并使信息密集•自然和对抗性驾驶环境(NADE)(NADE)的自动驾驶效率(NADE)进行了高度的测试•高度自动测试•高度自动驾驶型•在10到10次高度自动测试•驾驶型号•在10到5次范围内•在10到10次•提高了高度自动驾驶效果(•在10 3到10次)•高度自动驾驶范围•驾驶效率(•高度自动),并将其提高自动驾驶效率(inter),并在10 3至10次效果。 (ar)
摘要。尽管大规模预处理的视觉模型(VLM)尤其是在各种开放式播放任务中的剪辑,但它们在语义细分中的应用仍然具有挑战性,从而产生了带有错误分段区域的嘈杂分段图。在本文中,我们仔细地重新调查了剪辑的架构,并将残留连接确定为降低质量质量的噪声的主要来源。通过对剩余连接中统计特性的比较分析和不同训练的模型的注意力输出,我们发现剪辑的图像文本对比训练范式强调了全局特征,以牺牲局部歧视,从而导致嘈杂的分割结果。在响应中,我们提出了一种新型方法,该方法是分解剪辑的表示形式以增强开放式语义语义分割的。我们对最后一层介绍了三个简单的修改:删除剩余连接,实现自我关注并丢弃馈送前进的网络。ClearClip始终生成更清晰,更准确的绘制图,并在多个基准测试中胜过现有的方法,从而确认了我们发现的重要性。
本文提出了一种新的方法,用于从密集的点云数据中自动为曼哈顿环境中的建筑物创建语义数字模型。与以前仅依赖于数据驱动方法的方法不同,我们的方法将人工智能与域工程知识集成在一起,以在复杂的布局中克服室内点云处理和几何形式表示中的chal lenges。基于功能的DE Cision树分类器提取了主要建筑元素,该元素用于3D空间解析的基于知识的算法中。在此基础上,优化过程生成参数化的平面图,用于最终创建体积数字模型。该方法在慕尼黑技术大学和斯坦福大学的数据集上进行了验证,用于模型放置的平均准确性约为0.08 m,用于估计元素参数的0.06 m,这突出了其产生建筑物语义数字模型的有效性。这种方法强调了AI集成在数字孪生工作流程中的潜力,以提供更多的自动交配解决方案。
摘要 - 我们提出了一种估算事件数据的密集连续时间光流的方法。传统的致密光流方法计算两个图像之间的像素位移。由于缺少信息,这些方法无法在两个图像之间的盲时间中恢复像素轨迹。在这项工作中,我们表明可以使用事件相机中的事件来计算每像素,连续的光流。事件由于其渐进性和微秒响应时间而提供了有关像素空间中运动的时间细粒信息。我们利用这些好处来通过参数化的B´ezier曲线在连续的时间内密集地预测像素轨迹。为了实现这一目标,我们构建了一个具有强大诱导偏见的神经网络:首先,我们使用事件数据及时构建了多个顺序相关量。第二,我们使用B´ezier曲线在沿轨迹的多个时间戳上为这些相关量索引。第三,我们使用检索到的相关性迭代更新B´ezier曲线表示。我们的方法可以选择包括图像对,以进一步提高性能。据我们所知,我们的模型是可以从事件数据中回归密集的像素轨迹的第一种方法。为了训练和评估我们的模型,我们引入了一个合成数据集(Multiflow),该数据集(Multiflow)具有每个像素的移动对象和地面真相轨迹。开源代码和数据集向公众发布。我们的定量实验不仅表明我们的方法在连续的时间内成功预测了像素轨迹,而且在多速和DSEC-Flow上的传统两视频像素位移中也具有竞争力。