简介技术驱动的生物学进步可以称为生物技术。该术语是上个世纪由匈牙利工程师Karl Ereky创造的。(Ledford&Callaway,2020年),这种科学以无数的方式影响了人类的生活。基因工程包括各种技术来操纵遗传物质(主要是DNA),以改变,修复或增强形式或功能。重组DNA技术包含通常使用细菌(例如大肠杆菌)或噬菌体(感染细菌,例如λ噬菌体)或直接微注射的细菌(例如感染细菌的病毒)的DNA的化学剪接(重组)。(Robert&Baylis,2008年)。此类R-DNA技术已用于各种销售中,例如农业,医学,各种疫苗的制剂,基因疗法以及分子诊断等。通过噬菌体在核细菌细胞中进行的遗传修饰在文献中得到很好的描述。但是,必须了解,当病毒(噬菌体)响应于这种防御机制而侵入细菌细胞时。对于细菌,该机制是宿主限制/修改系统(Aksan Kurnaz,n.d。)。这是值得注意的,因为这种观察已在生物技术的范围内开辟了新的动态。
当前的牙科材料即兴创作,使其更聪明。使用这些智能材料,例如智能陶瓷,智能复合材料,无定形磷酸钙释放坑和填充密封剂,组合物,树脂模型的玻璃电离等等。以及其他材料,例如智能印象材料,正畸形状的内存合金,智能缝合力,智能毛刺等。彻底改变了牙科。对理想修复材料的追求导致发现了一种新一代的牙科材料,被称为智能材料。这些材料称为智能,因为它们可以通过压力,温度,pH,水分,电或磁场等刺激来改变。这些智能材料在提高效率方面具有未来,并标志着智能牙科中新一代或时代的开始。本评论文章的目的是审查有关智能材料及其分类,牙科复合树脂及其历史背景,智能复合材料,智能单色复合材料的审查。
抽象间充质干细胞(MSC)由于其出色地分化为各种细胞类型及其免疫调节特性的能力而引起了再生牙科的显着关注。本综述提供了与牙科有关的MSC研究进步的全面概述,重点是它们在牙周组织再生,牙髓再生和上颌面骨修复中的潜在应用。牙周疾病会影响牙齿周围和支撑牙齿的组织,是牙科中的重要挑战。当前治疗通常涉及手术干预和组织嫁接。MSC已显示出有望作为牙周组织再生的潜在替代方法,因为它们可以区分牙周韧带细胞,胶质细胞和成骨细胞。一些临床前和临床研究表明,基于MSC的疗法在牙周再生中的效率。牙纸浆再生是MSC保持承诺的另一个领域。受损或感染的牙髓可能会导致牙髓炎或牙髓坏死,因此需要根管治疗。MSC,因为它们具有再生牙髓组织并促进纸浆愈合的能力。它们可以区分成牙本质细胞样细胞并再生牙本质样组织,使其成为牙髓再生的潜在治疗选择。在颌面骨修复中,已经研究了MSC的成骨分化潜力和刺激骨再生的能力。研究表明结果有令人鼓舞的结果,表明基于MSC的疗法可能是颌面骨缺损的可行治疗选择。尚未完全了解牙科中基于MSC的疗法的机制,但被认为涉及旁分泌作用,免疫调节和分化为特定细胞类型的组合。未来的研究应着重于应对这些挑战,并探索新的方法,以增强MSC在牙科中的再生潜力。
聚醚酮(PEEK)材料是具有良好机械和热性能的生物相容性多环聚合物。通过使用网格术语“ Polyetherkethone”,“ Peek”,“ Peek”,“ Dentistry”,“ Denteristry”,“ Denteristry”,“ dententy”,“牙科”,“牙齿”,“ Pediatric Dentistry”中发表的文章,通过PubMed,Scopus,Cochrane和Google Scholar进行了回顾性文献搜索。鉴定,筛选和入围相关文章。总结了筛选的文章。本评论提供了对PEEK在儿科牙科中的特性和应用的见解。peek具有类似于骨骼的特征性低弹性模量,可以使其在截距正畸和闭孔器中用作固定和可移动的小儿牙科用具。此外,由于其非过敏性和可接受的美学,PEEK可以用作金属和其他材料的替代品。
随着新的修复技术不断涌现,以服务于寿命更长、药物和医疗保健需求更复杂的患者,牙科领域正在迅速发展。AEGD 计划让学生超越四年制 DMD 课程,加强他们的知识基础和临床判断能力,帮助他们跟上该领域的进步。虽然初级患者护理为住院医生提供了大部分的学习体验,但诊断技能和制定适合患者的治疗计划的能力也通过教学课程和每周研讨会得到加强,这些研讨会涵盖治疗计划、文献综述和普通牙科主题。住院医生接受培训,以便在跨职能医疗团队中有效运作和高效协作,同时磨练他们为具有各种病症和需求的多样化患者群体提供紧急、多学科和以患者为中心的口腔保健的能力。
人工智能(AI)正在迅速改变各个部门,牙科也不例外。本文探讨了AI在现代牙科实践中的扩大作用,研究了其在诊断,治疗计划和患者护理中的应用。AI驱动的工具,以通过放射线图像和临床数据的分析来帮助检测龋齿,牙周疾病和口腔癌。此外,AI [1,2]算法被用于制定个性化的治疗计划,预测治疗结果并自动化某些牙科程序。尽管在数据隐私,算法偏差和监管框架方面仍然存在挑战,但AI的整合具有提高诊断准确性,提高治疗效率并最终提高牙科护理标准的潜力。本文概述了牙科中AI的当前状态,讨论了其潜在的好处和局限性,并强调了未来的研发方向。
摘要:背景:人工智能(AI)已在公共卫生领域占据一席之地,因为越来越多的人希望使用可以让他们更快、更准确地工作的技术进行诊断,从而降低成本和减少医疗错误。方法:在本研究中,从意大利罗马Sapienza大学口腔颌面科学系随机选择了 120 张全景 X 射线(OPG)。使用 Apox 获取和分析 OPG,Apox 可拍摄全景 X 射线并自动返回牙齿公式、牙种植体、假牙冠、填充物和根残留物的存在。进行了描述性分析,将分类变量呈现为绝对频率和相对频率。结果:总的来说,真阳性(TP)值的数量为 2.195(19.06%);真阴性(TN),8.908(77.34%);假阳性(FP),132(1.15%);假阴性(FN)为 283(2.46%)。总体敏感性为 0.89,而总体特异性为 0.98。结论:本研究展示了牙科领域的最新成果,分析了新诊断方法的应用和可信度,以改善牙医的工作和患者的护理。
描述口腔健康是整体健康不可分割的一部分,影响着个人、卫生系统和社会。口腔疾病是最常见的慢性病之一,如果以高质量和最新的数据为基础的循证政策和实践,口腔疾病是可以预防的。人口口腔健康研究是牙科研究的一个主要分支,它为科学界、政策制定者和牙科服务提供者、专业人士、行业和公众提供重要信息,以改善国家、地区和全球社区的口腔健康。昆士兰大学人口口腔健康中心 (POHUQ) 是口腔流行病学和人口口腔健康研究的领导者,旨在改善人口口腔健康和减少口腔健康不平等。POHUQ 旨在提供高质量的研究数据,为改善人口口腔健康的政策和实践提供信息。POHUQ 得到了四项 NHMRC/MRFF 资助、Borrow 基金会和 5 年 UQ VC 战略资金支持。
a)乙型肝炎必须筛选所有前瞻性牙科学生的乙型肝炎。本筛查应在该计划开始之前的6个月之前进行(即2024年2月1日之前不是)。乙型肝炎的前瞻性学生阴性且没有记录抗丙型肝炎的血清学证据(即抗HBS≥10MIU/mL)必须接种主要课程系列(即3剂乙型肝炎疫苗)。应在初级三剂疫苗接种系列完成后1-2个月内进行疫苗接种后的血清学测试,以确定保护性抗体的浓度(即抗HBS≥10miU/ml)。尽管有反复的疫苗接种,但潜在的学生仍然是非免疫性的,他们将获得咨询,以了解他们在学习过程中以及毕业何时对乙型肝炎的潜在风险和易感性。
