在6.5 GPa的压力下,用Fenico -C系统进行了具有不同氮浓度的钻石结晶。随着钻石中的氮浓度的增加,合成的钻石晶体的颜色从无色变为黄色,再到最终变为阿特罗维替氏菌(深绿色)。所获得的晶体的所有拉曼峰位于约1330 cm -1的位置,仅包含SP 3杂交钻石相。基于傅立叶变换红外结果,无色钻石的氮浓度<1 ppm,并且未检测到与氮杂质相对应的吸收峰。然而,Atrovirens钻石的C-中心氮浓度达到1030 ppm,A-中心氮的值约为180 ppm,在1282 cm-1处具有特征性吸收峰。此外,通过光致发光测量,NV 0和NV-光学色中心都不存在,氮杂质小于1 ppm。然而,在无色钻石中观察到位于695 nm和793.6 nm的NI相关中心。与普通NV中心相比,793.6 nm处的NE8颜色中心具有更大的应用潜力。nv 0和NV-光学色中心在钻石中共存,没有合成系统中没有任何添加剂。重要的是,仅NV -
在过去的几年中,在光激发的发色团中,增强的跨系统交叉(EISC)1-3的过程经常被利用,这些传播的发色团经常被用作进入有机彩色团的高旋转状态的一种手段。示例包括二酰亚胺(PDI)4的三胞胎状态或各种发色团 - 自由基化合物的四重奏或五重状态。5 - 10,除了具有基本兴趣之外,后者在新兴的分子旋转基质中的应用也可能具有有希望的特性。例如,已经表明,PDI - 自由基化合物的分子四重奏状态可以用作多级别自旋Qubits,即qudits,用于量子信息科学中的应用。11,12共价连接的发色团中的三重态产量增加 - 稳定的自由基系统对于像沉重的无原子无原子感官感官的应用也有吸引力 - 三胞胎 - 三重三元光子上转化或光动力疗法。13 - 16
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
印度尼西亚批准了巴黎协议以应对气候变化,并承诺减少其碳排放。但是,这一承诺与Joko Widodo政府的印度尼西亚的发展计划进行了对比。他的政策使开发了其他发电厂,从而使印度尼西亚对煤炭的依赖永存。因此,必须研究为什么印度尼西亚仍在努力摆脱对煤炭的依赖,尽管其雄心勃勃的目标是应对气候变化。本文将应用哥本哈根学校的证券化理论来探讨如何定义安全性并塑造印度尼西亚的能源过渡过程。此外,这项研究将使用分配和程序正义理论来研究决策过程和气候变化政策实施。为了实现这一目标,我们将采用定性方法,例如书面研究,其中包括学术文献以及政府的陈述和法规。本文认为,印度尼西亚的能源转变会因在气候变化上方优先考虑其他安全问题而阻碍。此外,气候政策制定和实施中缺乏司法原则为印度尼西亚对煤炭的依赖做出了贡献。由于印度尼西亚是世界上最大的煤炭出口商,也是全球十大污染者之一,因此该研究打算为确定过渡到可再生能源的挑战做出贡献。
人口增长:目前,巴基斯坦拥有超过2.2亿人的家园,预计到2050年,这个数字将增加到3.5亿。这表示该国人口预计增加了56%,这是由于它将给巴基斯坦的资源和基础设施带来的压力而引起警报的原因。巴基斯坦目前每年的人口增长率近2%,这是南亚国家中最高的。如果这种趋势继续下去,到2050年,人口估计将达到3.66亿人口。不断增长的人口构成了许多挑战,例如粮食不安全,缺水,就业和基础设施。图1。巴基斯坦 - 总人口来源:人口统计2经济疲软:巴基斯坦的经济多年来一直在挣扎。巴基斯坦的债务比例比率是世界上最高的债务比率之一。在2022年,该国的债务约占其GDP 3的73.5%。这意味着政府在债务还款上花费的钱比其他方面的钱(例如教育,医疗保健和基础设施)。外汇储备非常低。在2022年,该国储备金不到100亿美元,这意味着该国的支付进口账单的资源有限。 高通货膨胀是目前经济面临的另一个核心问题。 目前,巴基斯坦的通货膨胀率最高,为36.4%,这给经济带来了额外的压力。 同样,失业率也很高。 在2022年,失业率超过6%。在2022年,该国储备金不到100亿美元,这意味着该国的支付进口账单的资源有限。高通货膨胀是目前经济面临的另一个核心问题。目前,巴基斯坦的通货膨胀率最高,为36.4%,这给经济带来了额外的压力。同样,失业率也很高。在2022年,失业率超过6%。这意味着该国有很多人无法找到工作。
摘要 批判学者认为“没有大型科技公司就没有人工智能”。本研究深入探讨了亚马逊、微软和谷歌 (Alphabet) 等大型科技集团在“人工智能工业化”中扮演的重要作用。这一概念概括了人工智能技术从研发阶段转向跨不同行业部门的实际应用,从而产生了新的依赖关系和相关投资。我们使用“大型人工智能”一词来概括人工智能和大型科技公司的结构性融合,其特点是人工智能与这些大型科技公司的基础设施、资源和投资之间存在深刻的相互依赖。我们的研究采用“技术图表”方法,仔细研究了大型科技公司在人工智能领域的基础设施支持和投资,重点关注企业合作伙伴关系、收购和金融投资。此外,我们还对亚马逊、微软和谷歌提供的全部云平台产品和服务进行了详细研究。我们表明,人工智能不仅仅是一个抽象的概念,而是一个实际的技术堆栈,包括基础设施、模型、应用程序以及依赖该堆栈的应用程序和公司的生态系统。值得注意的是,这些科技巨头已将堆栈的所有三个组件无缝集成到他们的云产品中。此外,他们还开发了以行业为中心的解决方案和市场,旨在吸引第三方开发人员和企业,促进更广泛的人工智能生态系统的发展。这项分析强调了人工智能和云基础设施之间错综复杂的相互依赖关系,强调了云人工智能的行业特定方面。
摘要 — 评估了金刚石 pn 结贝塔伏特电池能量转换效率的温度依赖性。我们制造了伪垂直金刚石 pn 结二极管,并表征了其在 5-300 K 电子束辐照下的能量转换效率。金刚石 pn 结二极管在 150-300 K 时的能量转换效率为 18-24%,是硅 PiN 二极管的两倍多。另一方面,在 100 K 以下,由于金刚石的串联电阻增加,二极管的能量转换效率显着下降。在 150K 以上,金刚石 pn 结二极管的能量转换效率的温度依赖性小于硅二极管,这将使金刚石 pn 结贝塔伏特电池成为一种有前途的装置,用于在除低温区域以外的宽温度范围内进行遥感设备的能量收集。
是概率度量的法律和弱收敛性的特征。对于更先进的应用程序分布和特征值的分布,Stieltjes Tranform不够强大,并且需要控制整个分解矩阵G K(z)。这是在I.I.D的[ALE+14]中进行了研究的。情况下,确定G k(z)接近涉及尺寸和频谱参数z的定量界限的g k(z)i p。此分析后来被携带到[KY17]中的线性依赖情况,表明G K(Z)接近确定性矩阵G(z),这通常不是身份矩阵的倍数。遵循[HLN07]的术语,我们将矩阵G(z)称为G K(z)的确定性等效词。在处理独立列的最一般情况下,[LC21]发现了类似的确定性等效物。值得注意的是,他们考虑了具有不同分布的列,这在先前的文献中未经研究。最后一篇文章不允许光谱参数z随维度而变化,尤其是用定量界限靠近真实轴。我们通过量化基础随机矩阵具有i.i.d的收敛来完成它来完成它。列。我们的结果包括两个不同的设置:当z是具有积极虚构零件的复数时,不会消失得太快,
化学基因筛选是探索癌细胞对药物的反应如何受其突变影响的有力工具,但它们缺乏从分子层面观察单个基因对暴露反应的贡献。在这里,我们介绍了 sci-Plex- G ene-by- E nvironment(sci-Plex- G x E),这是一个结合单细胞基因和化学筛选的大规模平台。我们通过确定 522 种人类激酶中的每一种对胶质母细胞瘤对不同药物的反应的贡献来强调大规模、无偏筛选的优势,这些药物旨在消除受体酪氨酸激酶途径的信号传导。总的来说,我们在 1,052,205 个单细胞转录组中探测了 14,121 种基因与环境的组合。我们鉴定了一种以 MEK/MAPK 依赖的方式调节的补偿性自适应信号的表达特征。旨在防止适应的进一步分析表明,有前景的联合疗法,包括双重 MEK 和 CDC7/CDK9 或 NF-kB 抑制剂,是防止胶质母细胞瘤转录适应靶向治疗的有效手段。
摘要:特征良好的单链纳米颗粒(SCNP),通过在稀的条件下从线性聚苯乙烯前体进行合成,通过分子内[4 + 4]热环节交联反应,添加到不同浓度的纠缠聚苯二烯熔体中。从纯线性熔体开始,比SCNP的熔体更具粘性,零剪切粘度在添加纳米颗粒后增加并达到最大值,然后最终降至SCNP熔体的值。分子模拟揭示了这种意外行为的起源,这是两个组成部分动力学截然不同的组成依赖性的相互作用。SCNP的浓度降低,因为它们的浓度降低,因为它们是由线性链拧紧的,达到的最大粘度高于分数约20%的线性链的最大粘度。将这种行为类似于将单环聚合物添加到线性矩阵中的行为。这一发现提供了有关SCNP作为聚合物的有效熵粘度修饰符的设计和使用的见解,并有助于讨论循环结构的物理学。