添加剂制造(AM)由于直接制造设施,设计灵活性和有效的交货时间而在许多行业中越来越受欢迎。定向能量沉积(DED)是AM的变体,激光金属沉积(LMD)被视为DED过程,它使用激光作为热源来融化和沉积通过粉末形式的喷嘴喂食的原材料。本文提出了一项研究工作,研究了使用pH 13-8 mo不锈钢粉末沉积的激光金属形式。进行了实验工作,以产生S形的单珠壁,其主要过程参数影响能量密度。通过将能量密度的水平视为低,中和高,讨论了结果。很明显,低能密度的参数不会产生不当或不当的S形壁。但是,高能量密度参数产生相对良好的沉积壁,但是由于沉积过程中的热量积累,壁的几何形式并不稳定。在每个能量密度水平上都可以看到沉积墙上的球。当热能不足以熔化并从移动喷嘴中沉积粉末时,就会发生这种缺陷。
由于直接制造设施、设计灵活性和有效的交付周期,增材制造 (AM) 在许多行业中越来越受欢迎。定向能量沉积 (DED) 是 AM 的一种变体,激光金属沉积 (LMD) 被视为 DED 工艺,它使用激光作为热源来熔化和沉积通过喷嘴以粉末形式送入的原材料。本文介绍了一项研究工作,研究了使用 PH 13-8 Mo 不锈钢粉末的 S 形激光金属沉积部件的形式。进行了实验工作以生产 S 形单珠壁,主要工艺参数影响能量密度。通过将能量密度水平分为低、中、高,讨论了结果。可以清楚地观察到,低能量密度水平参数不会产生或产生不合适的 S 形壁。然而,高能量密度水平参数会产生相对较好的沉积壁,但由于沉积过程中的热量积累,壁的几何形状不稳定。在每个能量密度水平上都可以看到沉积壁上的球化。当没有足够的热能来熔化和沉积来自移动喷嘴的粉末时,就会出现这种缺陷。
摘要 各行业采用金属增材制造受到沉积部件中残余应力和变形的阻碍。定向能量沉积过程中的大热梯度通常会导致最终沉积物中出现残余应力。参数优化主要用于缓解残余应力。然而,工艺参数的影响是材料特定的。当前的研究旨在研究层间停留时间对高强度钢合金定向能量沉积中残余应力的影响。样品以三个层间停留时间水平沉积。使用 X 射线衍射测量表面和体积残余应力。发现表面和体积残余应力都随着层间停留时间的增加而增加。
摘要 。WAAM工艺中的热行为是产生热应力的一个重要原因。本文利用ABAQUS软件建立了四层壁面的三维模型,以研究碳钢(ASTM A36)WAAM壁面的热行为。此外,研究了基材预热温度和行进速度对温度分布的影响。建模结果表明,随着沉积层数的增加,峰值温度升高,但平均冷却速度降低。此外,基材预热会增加第一层的峰值温度并降低其平均冷却速度。从模拟结果来看,行进速度对沉积层的热行为有主要影响。 关键词 。增材制造;电弧增材制造;有限元方法;低碳钢。
密封的投标文件,在信封上标有适用的RFB编号,项目名称,截止日期和时间必须存放在位于Umlazi Main Campus的Mut West Wide Administration Building Security Building Security Foyer的招标盒中。
锂离子电池单元的关键组件是阴极、阳极、隔膜和电解质。阴极原材料(锂加上镍、钴、锰、磷和铁等各种组合)从地下开采出来,加工成金属化学品(例如硫酸镍),然后组合制成阴极活性材料 (CAM)。阳极主要由石墨制成,石墨由天然开采的石墨制成,或由石油副产品衍生的石油焦制成。CAM 与添加剂和粘合剂组合,然后沉积在铝箔上;阳极材料同样沉积在铜箔上。在电池内,这些电极由隔膜隔开;电池内充满液体电解质。单个 LIB 电池组合成电池组,用于 EV、BESS 或其他电池应用。
摘要:使用连续的离子层吸附和反应(Silar)方法,将氧化物和氧化物基的电极的薄膜沉积在不锈钢基板上。X射线衍射(XRD)研究表明,底物上的无定形材料形成,并通过能量分散研究(EDS)证实了材料的组成。水接触角度测量显示了沉积材料的超吞噬表面。形态显示氧化摄氏类似于手指芯片型形态,而真菌喜欢和鳄鱼后生的形态,对于氧化氧化物氧化物氧化物和氧化物氧化物和氧化物氧化物 - 氧化物 - 氧化物 - 氧化物激活碳(AC)的复合。在0.2 m的非水力KCL电解质中进行了超级电容器施用的环状伏安测量。指定具有94.22°接触角的氧化物电极为106.25 f·g
摘要:目前的论文旨在评估两种热管理方法对由电线 +弧添加剂制造(WAAM)构建的薄壁结构的几何和生产率的影响。ER 5356(AL5MG)的薄壁具有不同长度和相同数量的层,并在固定的沉积参数集中通过活跃的冷却技术(近乎免疫的活性冷却 - NIAC)沉积。 然后,在空气中使用天然冷却(NC)进行相同的实验。 为了表征热管理方法,在沉积时间内通过尾随/前导红外高温计监测通路间温度(即沉积后续层的温度)。 最后,使用NC和NIAC接近温度等效的NC和NIAC方法沉积了具有固定长度的薄壁。 正如预期的那样,壁长越短,沉积浓度,热量积累,从而越强烈。 由于其较低的散热效果,这种行为对于NC策略来说更为明显,并且过早。 主要发现是,无论采用和维持相同的相互通道温度所采用的热管理技术,所构建的零件的几何形状往往稳定且非常相似。 但是,由于NIAC技术的散热器更大的优势,总沉积时间在某种程度上要短一些。 因此,NIAC技术通过WAAM促进了小零件和细节的不间断制造。薄壁具有不同长度和相同数量的层,并在固定的沉积参数集中通过活跃的冷却技术(近乎免疫的活性冷却 - NIAC)沉积。然后,在空气中使用天然冷却(NC)进行相同的实验。为了表征热管理方法,在沉积时间内通过尾随/前导红外高温计监测通路间温度(即沉积后续层的温度)。最后,使用NC和NIAC接近温度等效的NC和NIAC方法沉积了具有固定长度的薄壁。正如预期的那样,壁长越短,沉积浓度,热量积累,从而越强烈。由于其较低的散热效果,这种行为对于NC策略来说更为明显,并且过早。主要发现是,无论采用和维持相同的相互通道温度所采用的热管理技术,所构建的零件的几何形状往往稳定且非常相似。但是,由于NIAC技术的散热器更大的优势,总沉积时间在某种程度上要短一些。因此,NIAC技术通过WAAM促进了小零件和细节的不间断制造。
