摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]
在低温下研究经典和量子热效应需要使用片上局部高灵敏度测温法。使用聚焦离子束 (FIB) 辅助沉积制备的碳铂复合材料形成粒状结构,本研究表明,这种结构特别适合此应用。使用 24 pA 离子束电流沉积的碳铂温度计在 1 K 以下具有高灵敏度,可与最好的低温温度计相媲美。此外,这些温度计可以使用无掩模工艺精确放置在芯片上数十纳米的范围内。它们还具有弱磁场依赖性,在施加 0 至 8 T 的磁场时电阻变化小于 3%。最后,由于目前广泛使用 FIB,这些温度计可集成到各种纳米级设备中。© 2020 Elsevier Ltd。保留所有权利。
我们研究了聚焦离子束沉积碳铂 (FIB C-Pt) 复合材料作为低温灵敏局部微温度计的用途,该复合材料可在器件制造的任何阶段无需使用掩模进行沉积。FIB 沉积是获得纳米级欧姆接触的常用方法 [20]。因此,它在这方面得到了广泛的研究。特别是,已经研究了 FIB C-Pt 的电阻率与成分 [21, 22, 23]、温度 [24, 25, 26, 27]、尺寸 [28, 29] 和沉积参数 [30, 31] 的关系。然而,FIB C-Pt 作为低温电阻温度计的潜力从未被研究过。虽然复合系统代表了一种新型的片上测温方法,但其成分元素 Pt [32, 33, 34, 35, 36, 37] 和 C [32, 38, 39] 已被用作电阻温度计,用于各种应用。对于纯 Pt 温度计,与大多数金属温度计一样,
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。
由于仪器错误和软件限制,介电膜的折射率小于50 nm。在解决这个问题时,我们报告了椭圆测量Pro;可靠地评估折射率的可靠评估,以对沉积的各种热生长和化学蒸气,CVD,SI底物的介电膜,介电膜降低到约10 nm的厚度,并且我们在膜片界面界面上的当前了解的结果比较了结果。在所有研究的情况下,我们都发现界面区域在光学上与厚膜不同,并且精确的膜处理实质会改变界面区域的性质。-
摘要 — 近年来,硅光子学引起了越来越多的关注,主要用于微电子电路或生物传感应用中的光通信光互连。主要在绝缘体上硅平台上制造的用于 CMOS 兼容制造的基本无源和有源元件(包括探测器和调制器)的开发已达到如此高的性能水平,以至于应该解决硅光子学与微电子电路的集成挑战。由于晶体硅只能从另一个硅晶体中生长,因此无法在这种状态下沉积,因此光学器件通常仅限于单层。另一种方法是使用后端 CMOS 制造工艺在 CMOS 芯片上方集成光子层。本文讨论了用于此目的的各种材料,包括氮化硅、非晶硅和多晶硅。关键词 — 硅光子学、CMOS、集成。
