Shi,X.,Liu,W。和Lim,M。K.(2023)供应链弹性:新的挑战和机遇。国际物流研究和应用杂志(DOI:10.1080/13675567.2023.2262396)(早期在线出版物)这是本文的作者接受版本,在此处存放在此处的CONSECTER COMMONS:https://creativecommons.org/commons.org/licens.org/plicessense/lic by-nc-nc nc/4.4.0/4.0/。,建议您从它引用的话:https://doi.org/10.1080/13675567.2023.2262396 https://eprints.glaints.gla.ac.ac.ac.uk/306982/:22 9月22日20223年9月22日
由于严格的环境法规,使用增材制造工艺修复和再制造机械零件引起了广泛关注。定向能量沉积 (DED) 被广泛用于改造机械零件。在本研究中,进行了有限元分析 (FEA),以研究基材相和倾斜角对通过 DED 沉积的哈氏合金 X 区域附近传热特性的影响。设计了考虑焊珠尺寸和图案间距的 FE 模型。采用平面高斯分布的体积热源模型作为 DED 的热通量模型。基材和沉积粉末分别为 S45C 结构钢和哈氏合金 X。在进行 FEA 时考虑了温度相关的热性能。研究了基材相和倾斜角对沉积区域附近温度分布和热影响区 (HAZ) 深度的影响。此外,还研究了沉积路径对 HAZ 深度的影响。分析结果用于确定合适的基底相位和倾斜角度以及适当的沉积路径。
摘要:同轴丝材激光金属沉积是一种多功能、高效的增材工艺,可在复杂结构的制造中实现高沉积速率。本文研究了三光束同轴丝材系统,特别关注了沉积高度和激光散焦对所得珠子几何形状的影响。随着沉积间隔距离的变化,工件照明比例也会发生变化,该比例描述了直接进入原料丝材和基材的能量比。在不同的散焦水平和沉积速率下沉积单个钛珠,并测量和分析珠子的纵横比。在实验设置中,发现散焦水平和沉积速率对所得珠子的纵横比有显著影响。随着离光束会聚平面的散焦水平增加,光斑尺寸增加,沉积轨道更宽更平。工艺参数可用于将沉积材料调整到所需的纵横比。在同轴丝材沉积中,散焦为丝材和基材之间的热量分布提供了一种调节机制,对所得沉积物有重要影响。
使用粘合带的机械去角质进行了在六角硼(HBN)的天然晶体上进行的(图S1面板A和C),石墨烯(图s1 b)和石墨(图s1 d)在氧化硅晶片(290nm)上。h-bn薄片被用作顶部(图s1 a)和底部(图s1 c)介电层以及15 nm石墨片。通过手写笔轮廓仪中的测量确认了厚度。在异质结构的堆叠过程中,制造了聚碳酸酯(PC)膜并沉积在聚二甲基硅氧烷(PDMS)上。使用不同层的自然边缘对准两种材料的晶体方向,将顶部HBN薄片捡起50-60°,并在190°的石墨烯单层上沉积。之后,清洁HBN/石墨烯异质结构,通过在氯仿中冲洗几分钟来去除聚碳酸酯膜。使用相同的技术将HBN底部薄片沉积到石墨后门上。最后,堆叠的HBN顶部和石墨烯片以类似的方式捡起,并沉积在HBN底部和石墨堆上,并与天然边缘对齐。
揭开重新制造的数字过渡:文学Teixeira,E。L. S.,Tjahjono,B。,Beltran,M。&Julião,J。Author post-print (accepted) deposited by Coventry University's Repository Original citation & hyperlink: Teixeira, ELS, Tjahjono, B, Beltran, M & Julião, J 2022, 'Demystifying the digital transition of remanufacturing: a systematic review of literature', Computers in Industry, vol.134,103567。在创意共享属性下获得许可 - 非商业 - 诺迪德剂4.0国际http://creativecommons.org/licenses/by-nc-nc-nd/4.0/ copyright©和/或其他版权所有者保留了版权©和道德权利。未经事先许可或收费就可以下载副本以进行个人非商业研究或研究。如果没有首先从版权所有者获得书面许可的情况下,无法从版权所有者获得许可的情况下进行广泛的复制或引用。未经版权持有人的正式许可,不得以任何方式更改内容或以任何格式或媒介出售。本文档是作者的后版本,并包含在同行评审过程中商定的任何修订版。发布版本和此版本之间可能存在一些差异,并建议您从该版本中咨询已发布的版本。
摘要:传统的制备金属—陶瓷复合结构的方法,由于金属与陶瓷材料之间的热膨胀系数等性能差异,容易产生分层、开裂等缺陷。激光定向能量沉积(LDED)技术具有在成形过程中可以改变材料成分的独特优势,该技术可以克服成形复合结构时存在的问题。本研究利用LDED技术制备了多层复合结构,不同的材料采用各自合适的工艺参数进行沉积。先沉积一层Al 2 O 3 陶瓷,再沉积三层NbMoTa多主元合金(MPEA)作为单一复合结构单元。在φ20 mm×60 mm圆柱体上表面成形了由多个复合结构单元组成的NbMoTa–Al 2 O 3 多层复合结构试件,耐磨性较NbMoTa提高了55%。平行成形方向电阻率为1.55×10 − 5 Ω×m,垂直成形方向电阻率为1.29×10 − 7 Ω×m,成功获得了一种电各向异性的新型材料,本研究为智能材料及新型传感器的制备提供了实验方法和数据。
研究了五苯薄膜在氧化锡(ITO)涂层玻璃上的物理和结构特性。使用20、30和60分钟的沉积时间的热蒸发方法沉积了五苯薄膜。现场发射扫描电子显微镜(FESEM)图像显示,膜厚度随沉积时间的增加而增加,在60分钟时出现了散装相位层。通过五射线衍射(XRD)模式证明了与15.5Å晶格间距相对应的薄膜相位的存在,其沉积时间为20和30分钟。同时,在沉积时间为60分钟,晶格间距为14.5Å,在五苯甲酸膜中验证了散装相的存在。原子力显微镜(AFM)的五苯甲烷膜结晶度的图像显示,沉积在Ito涂层玻璃上的五苯甲烯膜表现出具有模块化晶粒的相似岛屿的形成,从而产生了细晶体结构。从电流 - 电压(I-V)和电流密度 - 电压(J-V)特性中,五苯甲烯薄膜是欧姆的,并且随着五苯苯乙烯的厚度的降低而增加。五苯甲烯膜在透明底物上的宽带和窄带光电设备的发展中显示出潜力。
在这项研究中,在苏打石灰玻璃中合成了喷雾沉积的浓度掺杂钴硒化钴(YCOSE)薄材料,以及底物温度(140 o C,160 o C,160 o C,180 o C和200 o C)对其元素组成,结构,电气和光学diron dicem dicopie di scanning dicopie difi scanning dicopie di s scanning dicopie di scanning dim di scanning di ray di ray di ray di ray dim di brom sicropy dim di brotical decopie di ray dicopie di。 –XRD,四点探针和UV-VIS分光光度计。沉积的未居留和Y掺杂钴的EDX图显示了主要元素:钴,硒和Yttrium。这证实了Cose和Y掺杂的Cose薄材料的沉积。未扎的Cose薄材料的形态非常粗糙,包含随机定向的不均匀薄颗粒,而在140 O C下添加Y掺杂剂(0.1 mol%),从而使紧凑型矩形纳米类均匀分布。XRD结果表明,这些膜本质上是立方多晶的,并且在180 O C的基材温度下生长的膜可提供最出色的结晶质量和沿(111)方向的优先方向。从电气结果中观察到,底物温度的升高随着电阻率降低和电导率增加而增加膜厚度。尽管变化不是完全线性的,但由于在所有光学特性中的线性偏离线性偏离的胶片时,光学性质的变化并不完全线性。沉积样品的能量带隙范围为1.25 eV – 1.75 eV。生产的材料可用于生产光伏设备。
Microplotter®技术的核心是一种使用受控的超声处理以非接触方式沉积流体的分配器。这项获得专利的技术可以生产出在宽至20 µm宽的表面上形成特征的Picoliter液滴。与自动表面高度校准结合使用时,可以实现沉积特征直径的可变性系数,达到10%。可以使用多种流体,包括水溶液和许多基于有机溶剂的混合物。其他分配器遇到的流体,例如石墨烯或碳纳米管悬浮液,或粘度高达450 cp的液体,可以轻松沉积。超声抽水作用也是一种有效的清洁机制,用于依次快速沉积许多解决方案。
摘要 使用液态氙作为靶材的探测器被广泛应用于稀有事件搜索。关于相互作用粒子的结论依赖于对沉积能量的精确重建,而这需要借助放射源对探测器的能量标度进行校准。然而,微观校准,即将激发量子数转换为沉积能量,也需要充分了解在液态氙中产生单个闪烁光子或电离电子所需的能量。这些激发量子的总和与靶材中沉积的能量成正比。比例常数是平均激发能量,通常称为 W 值。在这里,我们展示了在带有混合(光电倍增管和硅光电倍增管)光电传感器配置的小型双相氙时间投影室中通过电子反冲相互作用对 W 值进行测量的方法。我们的结果基于在 O (1 − 10 keV) 处使用内部 37 Ar 和 83m Kr 源以及单电子事件进行的校准。我们得到的值为 W = 11 . 5 + 0 . 2 − 0 . 3 ( syst .) eV,统计不确定性可忽略不计,低于之前在这些能量下测量的值。如果得到进一步证实,我们的结果将与模拟液态氙探测器对粒子相互作用的绝对响应相关。
