必需的 CPC(BCC:32-4-216)概念规划会议 (CPC) 此会议于星期二举行,由 PAI-DM 主持。委员会成员:DOP、DEPS、分区、房地产合规以及娱乐和公园。目的:让开发团队接收县机构意见。必需的 CIM(BCC:32-4-217)社区意见会议 (CIM) 在 CPC 后的十 (10) 个工作日内,开发团队应根据县法规与 DM-PM 协调 CIM 的时间和地点。目的:让开发团队提交概念规划以供公众评论和讨论。DM-PM 将提供书面会议记录并将记录分发给所有各方。任何一方均可要求审查机构的代表参加 CIM。CIM 在发布后 21 至 30 天内举行。房产公布后,如果开发项目在 URDL 范围之外,则由开发申请人安排 CIM,地点在距拟议开发项目 8 英里以内,如果开发项目在 URDL 范围之内,则在距拟议开发项目 3 英里以内的地点,或者如果无法安排其他会议地点,则在陶森。会议可以在学校、图书馆、教堂、社区中心或其他公共集会场所举行。PAI 主任要求的额外 CIM 目的:如果一方提出要求,PAI 主任可以批准额外的 CIM 来解决未解决的意见或情况。有关住宅分区开发流程的更多信息,请访问:https://www.baltimorecountymd.gov/departments/pai/development-management/residential subdivision-process PAI-Development Management, COB, 111 West Chesapeake Ave., Rm 111, Towson, MD 21204
摘要:在大米中,半弱SM是最需要的特征之一,因为它促进了更好的产量和耐药性。Here, semi-dwarf rice lines lacking any residual transgene-DNA and o ff -target e ff ects were generated through CRISPR / Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants.结果表明吉布林林(GA 1和GA 4)水平降低,植物高度(28.72%)和叶叶长度,而所有其他特征保持不变。OSGA20OX2表达得到了高度抑制,突变体表现出降低的细胞长度,宽度,并通过外源性GA 3处理恢复其植物高度。野生型和纯合突变系(GXU43_9)的比较蛋白质组学分别显示了588种蛋白质的水平,分别是273个上调和315个下调的水平。鉴定出的差异表达的蛋白质(DEP)主要富含碳代谢和固定,糖酵解 /糖糖异生,光合作用和氧化磷酸化途径。与生长调节因素(GRF2,GRF7,GRF9,GRF9,GRF11和GRF11)和GA(Q8RZ73,Q8RZ73,Q9AS97,Q69197,Q69VG1,Q69VG1,Q8LNJ6,Q8LNJ6,q8lnj6,q8lnj6,qy8lnj6,qy8lnj6,q55,在突变系中,脱离应激抗应激的蛋白5(ASR5)和脱落酸受体(PYL5)上调。我们将CRISPR / CAS9与蛋白质组学筛选整合为快速评估CRISPR实验结果的最可靠策略。
2011年12月9日,对地观测与数字地球科学中心主任郭华东教授当选为中国科学院地球科学部委员。他是中国科学院对地观测与数字地球科学中心第一位当选的院士,这不仅是他个人的终身荣誉,也是对中国科学院对地观测与数字地球科学中心发展的一大助力。希望郭华东教授的当选能够为中心面向国家战略需求、面向国际科技前沿、面向“创新2020”、推动中国科学院对地观测与数字地球科学中心可持续发展提供有力支撑。30年来,郭华东教授在国内外雷达遥感研究与应用领域发挥了重要的引领作用。建立了无植被沙丘雷达散射几何模型、多频多时相雷达地物识别方法,在空间信息领域进行了开创性研究。他在雷达体制方面的研究,揭示了雷达电磁作用机理的特点。无植被沙丘几何散射模型,从理论上证明了SAR对干沙的穿透能力。发展了雷达极化理论,研究了火山熔岩的去极化现象和植物的多极化现象。他提出的多频多时相雷达处理与识别方法,为国家减灾减灾、矿产普查等需求做出了重要贡献。郭教授主持研制的数字地球概念技术模型和“数字地球原型系统DEPS/CAS”被国际同行誉为“里程碑式贡献”。他参与创立了国际数字地球学会,创办了《国际数字地球学报》并担任主编,推动了全球数字地球的发展。
摘要:由Nahco 3引起的碳酸氢钠应激是全球最严重的非生物胁迫之一。然而,很少关注植物对碳酸氢钠应激的反应的分子机制。了解碳酸氢钠应激触发的信号通路中的磷酸化事件,在50 mM NaHCO 3处理下,对大豆叶和根组织进行了基于TMT标记的定量磷酸蛋白质学分析。在本研究中,从培养的大豆中鉴定了总共7856种磷酸肽(甘氨酸最大L.merr。),代表3468个磷蛋白基团,其中2427个磷酸蛋白基团被新鉴定。这些磷酸蛋白基含有6326个独特的高磷光材料(UHPS),其中77.2%是新近识别的,当前的大豆磷材料数据库大小增加了43.4%。在这项研究中发现的磷酸肽中,我们从叶片组织中确定了67种磷酸肽(代表63种磷酸蛋白基团)和554种来自根组织的磷酸肽(代表487个磷酸蛋白基团),这些根组织显示出在双磷酸钠下的磷酸化水平有显着变化的磷酸化含量变化的磷酸含量变化,折叠press prance 5 prandy 5 pranse 5> 1.2或<0.8330 per> 1.83,相应地变化。定位预测表明,大多数磷酸蛋白都定位在叶子和根组织的细胞核中。go和kegg富集分析显示,叶片和根组织之间的富集功能术语截然不同,并且在根组织中比在叶片组织中富集了更多的途径。此外,从差异表达的磷酸蛋白(DEPS)中鉴定出总共53种不同的蛋白激酶和7种蛋白磷酸酶。蛋白激酶/磷酸酶相互作用的分析表明,相互作用的蛋白主要参与/与转运蛋白/膜传递,转录水平调节,蛋白质水平调节,信号/应激反应和其他功能。本研究中提出的结果揭示了对植物对碳酸氢钠应激的植物反应中翻译后修饰功能的见解。
国家光子学计划的建议 高功率激光器对美国国防至关重要。使用高功率固态激光器的定向能武器具有超精确瞄准、低单次使用成本和几乎无限的弹匣容量。在某些情况下,激光武器是应对新威胁的唯一实用方法。与以前需要在基础科学和技术方面取得重大进步的激光应用不同,许多定向能应用所需的高功率激光技术现已准备就绪,这在很大程度上要归功于国防部 (DoD) 为研发 (R&D) 和商业进步提供的资金。高功率激光器的商业应用(包括切割、焊接和增材制造)正在迅速扩展,并将在美国制造业中发挥越来越重要的作用。此外,随着这些市场推动产量增长,这一制造基础对定向能应用也将至关重要。然而,外国竞争正在加剧——美国制造业正处于关键时刻。美国是制造高功率激光器的全球领导者,但美国工业基础正在失去其对发达国家和新兴国家的竞争优势。过去十年,美国对高功率激光项目的资助有所减少,而此时该技术正处于实际应用于作战的边缘。与此同时,国外竞争迅速扩大——尤其是中国和俄罗斯。大批量生产高功率激光器是推动技术改进和进一步降低工业应用成本的关键。这一产量为国防部的应用提供了可持续的基础。目前,产量正在转移到海外,技术转让助长了外国国防威胁并侵蚀了美国的工业基础。建议:部署协调战略,确保高功率激光器的强大工业基础。与其他国家不同,美国没有协调战略来确保高功率激光器的强大制造基础。国家光子学计划 (NPI) 高功率激光器 (HPL) 工作组与定向能专业协会 (DEPS) 合作,召集了领先的国防承包商、商业激光公司和学术界,以确定改善美国国防行动和重新夺回我国制造业优势的建议。 HPL 工作组成员建议成立定向能计划办公室,制定和实施一项至少包含两个基本要素的国家战略: