摘要 - 深度学习的出现显着增强了心电图分析(ECGS),这是一种对评估心脏健康至关重要的非侵入性方法。尽管ECG解释的复杂性,高级深度学习模型的表现优于传统方法。但是,ECG数据的复杂性日益增加以及对实时和准确诊断的需求需要探索更健壮的架构,例如变压器。在这里,我们对应用于ECG分类的变压器体系结构进行了深入的审查。这些模型最初是为自然语言处理而开发的,这些模型捕获了其他模型可能忽略的ECG信号中复杂的时间关系。我们对最新的基于变压器的模型进行了广泛的搜索,并总结了它们,以讨论其应用程序的进步和挑战,并提出潜在的未来改进。本评论是研究人员和从业人员的宝贵资源,旨在阐明这种创新的ECG解释中的应用。
b" 对限制或提供雨水控制机会的场地特征和条件进行叙述性分析或描述。包括土壤类型(包括自然资源保护局 (NRCS) 定义的水文土壤组)、场地坡度和地下水深度。对保护自然资源的场地设计特征进行叙述性描述。对场地设计特征、建筑特征和路面选择进行叙述性描述和/或制表,以尽量减少场地的不透水性。对 DMA 进行制表和大小计算,包括自处理区、自保留区、排水至自保留区的区域以及排水至雨水管理设施的区域。详细信息和描述表明有足够的水头将径流引导到、流经和流出每个雨水管理设施到批准的排放点。已识别污染源的表格,以及针对每个污染源,用于最大程度减少污染物的源头控制措施。视情况而定,请参阅市政府关于垃圾围栏和装卸码头的标准计划,以及消防喷淋试验水排放指南。上述市政府网站上提供了此信息的链接。雨水管理设施中所选植物种类的清单以及选择这些植物种类的原因。包括如何灌溉植物以尽量减少用水量并确保植物存活的说明。请参阅上述市政府关于植物选择、间隔和灌溉的指南。提供了如何防止垃圾和杂物进入市政雨水排水系统的说明和详细信息。上述市政府网站上提供了已获批准的完整垃圾收集设备清单。所有雨水管理设施的一般维护要求。所有雨水管理设施的维护通道说明。设施维护和更换的资金来源和永久实施方式。识别与规范或要求的任何冲突,或实施雨水控制计划的其他预期障碍。土木工程师、建筑师和景观设计师的认证。适用时,附录:湾区水文模型表明符合水文改造管理标准。适用时,附录:描述在拆除活动期间如何管理含 PCB 的建筑材料。有关更多信息,请参阅此网页:https://dublin.ca.gov/2113。"
摘要:为了在后量子时代构建高效的安全系统,可以通过估算发起量子攻击所需的量子资源来找到防御容错量子计算机的最小安全参数。在容错量子计算机中,错误必须通过错误检测和错误校正达到可接受的水平,这需要额外使用量子资源。随着量子电路深度的增加,每个量子比特的计算时间增加,量子计算机中的错误也会增加。因此,就量子电路中的错误而言,通过增加量子比特的数量来降低深度是合适的。本文提出了一种用于容错量子计算机的SHA3的低深度量子电路实现,以减少错误。所提出的SHA3量子电路是通过在每个函数中的量子比特数、量子门和量子深度之间进行权衡来实现的。与最先进的方法相比,本文提出的方法分别将 T 深度和全深度减少了 30.3% 和 80.05%。我们期望这项工作将有助于建立量子时代的 SHA3 最低安全参数。
摘要:由于量子比特非常宝贵,而决定可用计算时间的退相干时间却非常有限,因此量子电路的合成和优化是量子计算中重要且基础的研究课题。具体来说,在密码学中,确定实现加密过程所需的最小量子资源对于评估对称密钥密码的量子安全性至关重要。在本文中,我们研究了在使用少量量子比特和量子门的情况下优化线性层量子电路深度的问题。为此,我们提出了一个线性布尔函数的实现和优化框架,通过该框架,我们可以显著减少对称密钥密码中使用的许多线性层的量子电路深度,而无需增加门数。
前室深度(ACD)是角度闭合疾病的主要危险因素,并且已用于各种人群的角度闭合筛查。但是,ACD是根据眼部生物计或前部光学相干断层扫描(AS-OCT)测量的,它们是昂贵的,在初级保健和社区环境中可能不容易获得。因此,这项概念验证研究旨在使用深度学习(DL)从低成本前部照片(ASP)预测ACD。我们包括2,311对ASP和ACD测量,用于算法开发和验证,以及380对算法测试。我们捕获了安装在缝隙灯泡生物显微镜上的数字摄像机的ASP。在用于算法开发和有效性的数据中,用眼部生物计(Iolmaster700或Lenstar LS9000)测量前腔深度,并在用于测试的数据中使用AS-OCT(Visante)。DL算法是从Resnet-50体系结构中修改的,并使用平均绝对误差(MAE),系数确定(R 2),Bland-Altman图和类内相关系数(ICC)进行评估。在验证中,我们的算法预测ACD的MAE(标准偏差)为0.18(0.14)mm; r 2 = 0.63。预测的ACD的MAE在眼睛开放角度为0.18(0.14)mm,眼睛闭合的眼睛为0.19(0.14)mm。实际和预测的ACD测量之间的ICC为0.81(95%CI 0.77,0.84)。在测试中,我们的算法预测ACD的MAE为0.23(0.18)mm; r 2 = 0.37。显着性地图突出显示了学生的余量,作为ACD预测中使用的主要结构。这项研究证明了通过DL预测ASP的ACD的可能性。该算法模仿了眼光进行预测的眼光,并为预测与角度闭合筛选相关的其他定量测量提供了基础。
通过我们的会面和他的课程,Shalev 教授向我介绍了量子和经典复杂性的各种主题,并提出了一些很棒的问题。对于我们的第一个项目,我研究了函数的近似度——这在概念上和数学上对我来说都是全新的。他对我非常耐心,指导我完成这个项目——教我技术和研究技能。特别是,他教会了我在开始回答有意义的研究问题之前,批判性地、严格地定义它们的价值。我的第二个项目(构成了这篇论文的基础)始于他关于量子查询和通信复杂性的课程中的一个项目。尽管我现在正在着手一个完全不同的主题,但 Ben-David 教授热情地鼓励我追逐我的求知欲。
高通量测序技术为研究植物基因组和亚基因组的起源与进化、群体驯化以及功能基因组学等提供了新的方法和途径。自然界中兰科植物有数以万计的成员,许多在生态链的延长与保护、观赏花卉的园艺利用、植物药材的利用等方面有着巨大的应用潜力。然而,兰花种质资源的改良还缺少大规模的基因敲除突变体文库和完善的遗传转化体系,新型基因编辑工具,如目前备受青睐的CRISPR-Cas9或一些碱基编辑器,尚未在兰花中得到广泛应用。除了品种繁多之外,与性状相关的功能基因的挖掘也需要高精度、高通量的基因组测序技术。目前兰花基因组学的研究重点已转向物种的起源和分类、基因组的进化和缺失、基因复制和染色体多倍体以及花形态发生的相关调控。这里讨论了过去几十年来兰花分子生物学和基因组学所取得的进展,包括基因组大小的进化和多倍体化。LTR 逆转录转座子的频繁插入在兰花基因组的扩展和结构变异中起着重要作用。核基因组的大规模基因复制事件产生了大量近期串联重复的基因,从而驱动了新基因的进化和功能分化。质体基因组的进化和缺失主要影响与光合作用和自养相关的基因,这表明兰花比任何其他陆生植物经历了更多的向异养的独立转变。此外,大规模重测序为构建遗传图谱提供了有用的SNP标记,这将有利于培育新的兰花品种。高通量测序和基因编辑技术在兰花性状相关基因的鉴定和分子育种中具有重要意义,它为我们提供了具有代表性的性状改良基因以及一些
评估了使用脉冲 keV 离子束在透射几何中对薄膜和准二维系统进行灵敏的多元素分析的飞行时间反冲检测的潜力。虽然飞行时间方法允许同时检测多种元素,而最大程度上不受反冲电荷状态的影响,但 keV 射弹能量可保证高反冲截面,从而在低剂量下获得高灵敏度。我们展示了该方法的能力,使用 22 Ne 和 40 Ar 作为射弹,穿过具有可选 LiF 涂层和单晶硅膜的薄碳箔,以用于不同的样品制备程序和晶体取向。使用大型位置灵敏探测器(0.13 sr),深度分辨率低于 6 nm,灵敏度低于 10 14
摘要 现代外科手术中麻醉是必不可少的,以确保患者安全并成功康复。麻醉深度 (DoA) 评估是一个重要且正在进行的研究领域,旨在确保患者在手术期间和术后的稳定性。这项研究通过开发一种基于脑电图 (EEG) 信号分析的新指数来解决当前 DoA 指数的局限性。采用经验小波变换 (EWT) 方法提取小波系数,然后进行统计分析。从小波系数中提取特征谱熵和二阶差异图。这些特征用于训练新指数 SSE DoA,利用具有线性核函数的支持向量机 (SVM)。新指数准确评估 DoA 以说明不同麻醉阶段之间的过渡。对九名患者和另外四名信号质量低的患者进行了测试。在我们测试的 9 名患者中,观察到与双谱 (BIS) 指数的平均相关性为 0.834。DoA 阶段转换分析显示 Choen's Kappa 为 0.809,表明一致性较高。关键词:麻醉深度、统计模型、经验小波变换、二阶差分图
尾注 1) 生物多样性和气候变化研讨会报告,IPCC,IPBES,(2021 年),https://ipbes.net/sites/default/files/2021-06/20210609_workshop_report_em- bargo_3pm_CEST_10_june_0.pdf 2) 自然相关金融风险声明,绿色金融体系网络,(2022 年),https://www.ngfs.net/en/communique-de-presse/ngfs-acknowl-edges-nature-related-risks-could-have-significant-macroeconomic-and-financial 和《达斯古普塔生物多样性经济学评论》(2021 年),https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review 3) 领导人对自然的承诺, (2020 年),https://www.leaderspledgefornature.org/wp-content/uploads/2021/06/Leaders_Pledge_for_Nature_27.09.20-ENGLISH.pdf 4) G7 2030 自然契约(2021 年),https://www.consilium.europa.eu/media/50363/g7-2030-nature-compact-pdf-120kb-4-pages-1.pdf (2021) 5) https://www.businessfornature.org 6) https://www.financeforbiodiversity.org/ 7) 生物多样性、自然资本和经济:财政、经济和环境部长政策指南,经合组织(2021 年),https://www.oecd.org/environ- ment/biodiversity-natural-capital-and-the-economy-1a1ae114-en.htm 8) https://www.sec.gov/news/press-release/2022-46 9) 全球公域的定义超越了国家边界的地理定义,指的是大自然提供的经济服务,正如全球公域联盟使用的定义。https://globalcommonsalliance.org/global-commons/