征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
vaska.sandeva@ugd.edu.mk 摘要:本文展示了汽车行业作为全球最大市场的作用,较短的开发周期给供应商和供应链带来了压力。本文探讨了人工智能在汽车行业的应用,强调了其改善整个汽车生命周期的潜力。人工智能可以应用于开发的各个阶段,包括设计、生产、规划、驾驶辅助和防撞系统。本文介绍了人工智能的概念,并强调了其在汽车行业从设计到运营的重要作用。大数据传感、记录和存储的发展为了解汽车性能提供了重要机会,从而带来了更安全、更好的汽车。人工智能在汽车行业的应用预计将显著改变该行业。高性能计算基础设施和仿真方法提高了产品性能,但仿真时间是工程师设计循环中的瓶颈。人工智能通过实现实时、仿真驱动的设计工作流程,显著增强了工程公司的能力。通过利用过去车辆开发的数据和更智能地使用计算机辅助工程分析 (CAE) 工具,人工智能显著减少了开发工作量和车辆设计活动。人工智能通过提供解决日常问题和挑战的解决方案,显著提高了我们的舒适度、便利性和经济未来。世界各国都在投资开发和推广各个领域的人工智能应用,确保为所有人提供更高效、更经济的未来。这一趋势是由全球努力克服挑战和改善日常生活所推动的。数据驱动的分析强调了人工智能对汽车制造和设计的变革性影响,强调了其作为创新驱动力和塑造行业未来的作用。文章重点介绍了先进技术如何提高汽车行业的效率和客户关注度,从产品开发到客户参与,从而改善整体运营和活动。关键词:汽车工业、仿真、人工智能、应用、设计、CAE。1.简介 汽车设计涉及创建车辆的整体外观和产品概念开发,通常由设计专家完成。Asutosh, P. Andreas,T.和 Dominik,W.2018)。2.2016)。2015)。设计对于汽车行业的创新和发展至关重要,而有吸引力的内饰和外观设计是引入新理念的关键。人工智能 (AI) 正在彻底改变汽车行业,提高制造效率并引入创新的汽车设计,从而使该行业数字化 (Pallab, D. 2016)。AI 正在通过自动化质量控制、提高电子燃料生产效率以及通过空气动力学优化和减轻车轮重量来改进前轮设计 (Sunu, P. 2017),彻底改变汽车行业。AI 算法还可以通过优化空气动力学和减轻车轮重量来提高前轮设计的性能和能源效率(Matthias,K.AI 正在通过改进设计和自动化制造任务来彻底改变汽车行业。汽车设计:创造创新和功能性的艺术 AI 使用的算法正在通过分析各种设计方案并评估其对车辆性能和效率的影响来彻底改变汽车设计,从而减少传统的劳动密集型流程(Oxford。AI 正在彻底改变汽车设计,使制造商能够在保持人性化的同时创造独特的形状和功能,并优化燃油效率、最高速度和空气动力学(Pallab, D. 2016)。汽车行业的 3D 打印 AI 在汽车行业的兴起彻底改变了制造业,因为它能够使用 3D 打印等先进技术来制造复杂的零件。使用特殊材料制造的 3D 打印汽车具有定制化和可持续性,但仅限于批量生产功能齐全的车辆(John,B.
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
目标:交付是评估行为干预措施忠诚度的最常见方法之一。但是,缺乏有关干预协议如何反映其提出的理论原理(设计保真)的研究报告。本研究提出了一种用于评估设计保真度的系统方法,并将其应用于针对体育锻炼和抑郁症的基于情感的干预措施。方法:情绪干预包括13个基于网络的模块,该模块是根据基础干预图设计的。具有行为变化专业知识的独立评估者编码了情感内容中的存在或不存在行为变化技术(BCT)。编码结果与干预设计师的先验可靠性规范进行了比较。结果:在讨论之后,独立评估者和干预设计师在与行为激活有关的BCT(AC1 0.91)的存在上具有很高的一致性,并具有“行为的证明”和“监测情绪后果”,具有最低的一致性(AC1 0.4)。与具有最低一致性(AC1 0.4)的“行为演示”和“对情绪后果的监测”(AC1 0.4)的“行为演示”和“监测情绪后果”的存在也有很高的一致性(AC1 0.88)。然后对情绪描述进行了修改,以使互判协议保持一致。结论:本研究提出了一种评估设计保真度的新方法。鼓励行为(和其他多组分)干预措施的开发人员开发和完善这种方法,并评估未来干预措施中的设计保真度,以确保BCT按预期运行。
截至 2023 年初,生成式人工智能已成为流行文化和科技行业的热门话题。多个网站允许用户写一个句子并返回一张描绘用户所写内容的图像。有些网站免费提供这项服务,而有些网站则要求用户为这项服务付费。2023 年 1 月 23 日,微软宣布向发明 ChatGPT 和 DALL-E[12][13] 的人工智能研究实验室 OpenAI 投资数十亿美元,这意味着人工智能领域的重要性和潜力。人工智能已经在医疗保健、制造业、零售业和银行业等许多行业得到应用。相对较新的文本到图像生成式人工智能领域(见第 2.1 节)进一步扩展了人工智能的使用领域。我们在本文中研究的一个潜在应用领域是用户体验设计(从现在开始称为 UX)。例如,正在从事 Web 应用程序项目的 UX 设计师或学生可能会发现创建可作为初稿并进一步改进的模拟用户界面很有用。
抽象背景:CRISPR工具箱通过标记效应子域的快速扩展,以酶促无效CAS9(DCAS9)或Cas9 Nickase(NCAS9)导致了几种有希望的新基因编辑策略。最近的添加包括CRISPR胞嘧啶或腺嘌呤碱基编辑器(CBES和ABES)和CRISPR Prime编辑器(PES),其中脱氨酶或逆转录酶分别融合到NCAS9。这些工具在动物和植物模型中建模并纠正引起疾病的突变的巨大希望。但到目前为止,还没有广泛可用的工具可以自动化BE和PE试剂的设计。结果:我们开发了PNB Designer,这是一种基于Web的PEGR NAS设计的应用程序,用于BES,并指导RNA。PNB设计师使设计定位指向RNA的指南RNA针对跨越多个王国的变体或参考基因组上的单个或多个靶标的指南RNA。与PNB设计师一起,我们设计了PegrNA,以模拟所有已知疾病,从而导致Clinvar可用的突变。此外,PNB设计人员可用于设计指南RNA来安装或恢复SNV,用一个CBE和七个不同的ABE PAM变体扫描基因组,并返回最佳使用。PNB设计师可以在http://fgcz-shiny .uzh.ch.ch.ch/pnbde signe r/结论上公开访问:结论:使用PNB设计师,我们为CRISPR PE和BE Reagents创建了一种用户友好的设计工具,应该简化选择编辑策略和避免设计并避免设计并进行设计。
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
药品价值链(包括临床试验、定价、获取途径和报销)是为传统单一疗法设计的。尽管已经发生了范式转变,增加了靶向联合疗法 (TCT) 的相关性,但法规和常规做法的适应速度很慢。我们探索了 9 个欧洲国家 17 家领先癌症机构的 19 位专家报告的 23 种晚期黑色素瘤和肺癌 TCT 的获取途径。我们发现,各国患者获取 TCT 的途径存在差异,各国特定法规存在差异,黑色素瘤和肺癌的临床实践也存在差异。更适合联合疗法背景的法规可以提高整个欧洲获取的公平性,并促进基于证据和授权使用联合疗法。