您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
逐步淘汰航运业的化石燃料对于减少温室气体排放至关重要。基于可再生能源的合成燃料是可持续海运业的一个有前途的选择,可再生甲醇是最广泛考虑的能源载体之一。然而,可再生甲醇的供应仍然有限,而且与传统燃料相关的成本明显高于传统燃料,这也是因为燃料合成必须依赖二氧化碳作为资源。通过使用船上碳捕获,可以避免燃烧过程中二氧化碳的释放,这种闭式循环减少了对碳源的需求。本文通过分析使用内燃机和相连的燃烧前和燃烧后碳捕获技术的整体船舶能源系统来研究这种情况。通过建立一个混合整数优化框架来优化船舶推进系统的设计和运行,研究了这些技术对完全可再生能源系统的技术经济性能的影响。所选案例研究的推进需求包括在波罗的海运营的渡轮的典型运行概况。将捕获情况与仅基于可再生甲醇的系统进行比较,可以发现封闭式碳循环系统具有显著的成本优势。基线情景的年成本降低了近 20%,燃烧后情况下的总捕获率为 90%,燃烧前情况下的总捕获率为 40% 左右。广泛的敏感性分析表明,这些成本优势在各种技术和经济边界条件下都具有稳健性。在燃烧前情况下,工艺热需求减少与发动机热供应增加相结合可能会使捕获率超过 90%。结果表明,将可再生燃料与船上碳捕获相结合可以为成本效益高、可持续的航运创造机会。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
在市场现实和制造方面是可行的。根据设计要求,进行了文献调查,并对市场上现有的直升机进行了竞争对手分析。基于这项研究,正在尝试设计一种在性能和可操作性方面比正在考虑的直升机更好的直升机。为了实现这一目标,进行了配置选择、性能和重量估计分析、机身和子系统。根据规格,设计的直升机旨在进行优化,以获得最有效的概念设计:低生产和运营成本。此外,该设计旨在重量轻,能够达到远距离,并具有强大的性能特征的巡航速度。
作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
vaska.sandeva@ugd.edu.mk 摘要:本文展示了汽车行业作为全球最大市场的作用,较短的开发周期给供应商和供应链带来了压力。本文探讨了人工智能在汽车行业的应用,强调了其改善整个汽车生命周期的潜力。人工智能可以应用于开发的各个阶段,包括设计、生产、规划、驾驶辅助和防撞系统。本文介绍了人工智能的概念,并强调了其在汽车行业从设计到运营的重要作用。大数据传感、记录和存储的发展为了解汽车性能提供了重要机会,从而带来了更安全、更好的汽车。人工智能在汽车行业的应用预计将显著改变该行业。高性能计算基础设施和仿真方法提高了产品性能,但仿真时间是工程师设计循环中的瓶颈。人工智能通过实现实时、仿真驱动的设计工作流程,显著增强了工程公司的能力。通过利用过去车辆开发的数据和更智能地使用计算机辅助工程分析 (CAE) 工具,人工智能显著减少了开发工作量和车辆设计活动。人工智能通过提供解决日常问题和挑战的解决方案,显著提高了我们的舒适度、便利性和经济未来。世界各国都在投资开发和推广各个领域的人工智能应用,确保为所有人提供更高效、更经济的未来。这一趋势是由全球努力克服挑战和改善日常生活所推动的。数据驱动的分析强调了人工智能对汽车制造和设计的变革性影响,强调了其作为创新驱动力和塑造行业未来的作用。文章重点介绍了先进技术如何提高汽车行业的效率和客户关注度,从产品开发到客户参与,从而改善整体运营和活动。关键词:汽车工业、仿真、人工智能、应用、设计、CAE。1.简介 汽车设计涉及创建车辆的整体外观和产品概念开发,通常由设计专家完成。Asutosh, P. Andreas,T.和 Dominik,W.2018)。2.2016)。2015)。设计对于汽车行业的创新和发展至关重要,而有吸引力的内饰和外观设计是引入新理念的关键。人工智能 (AI) 正在彻底改变汽车行业,提高制造效率并引入创新的汽车设计,从而使该行业数字化 (Pallab, D. 2016)。AI 正在通过自动化质量控制、提高电子燃料生产效率以及通过空气动力学优化和减轻车轮重量来改进前轮设计 (Sunu, P. 2017),彻底改变汽车行业。AI 算法还可以通过优化空气动力学和减轻车轮重量来提高前轮设计的性能和能源效率(Matthias,K.AI 正在通过改进设计和自动化制造任务来彻底改变汽车行业。汽车设计:创造创新和功能性的艺术 AI 使用的算法正在通过分析各种设计方案并评估其对车辆性能和效率的影响来彻底改变汽车设计,从而减少传统的劳动密集型流程(Oxford。AI 正在彻底改变汽车设计,使制造商能够在保持人性化的同时创造独特的形状和功能,并优化燃油效率、最高速度和空气动力学(Pallab, D. 2016)。汽车行业的 3D 打印 AI 在汽车行业的兴起彻底改变了制造业,因为它能够使用 3D 打印等先进技术来制造复杂的零件。使用特殊材料制造的 3D 打印汽车具有定制化和可持续性,但仅限于批量生产功能齐全的车辆(John,B.
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
抽象背景:CRISPR工具箱通过标记效应子域的快速扩展,以酶促无效CAS9(DCAS9)或Cas9 Nickase(NCAS9)导致了几种有希望的新基因编辑策略。最近的添加包括CRISPR胞嘧啶或腺嘌呤碱基编辑器(CBES和ABES)和CRISPR Prime编辑器(PES),其中脱氨酶或逆转录酶分别融合到NCAS9。这些工具在动物和植物模型中建模并纠正引起疾病的突变的巨大希望。但到目前为止,还没有广泛可用的工具可以自动化BE和PE试剂的设计。结果:我们开发了PNB Designer,这是一种基于Web的PEGR NAS设计的应用程序,用于BES,并指导RNA。PNB设计师使设计定位指向RNA的指南RNA针对跨越多个王国的变体或参考基因组上的单个或多个靶标的指南RNA。与PNB设计师一起,我们设计了PegrNA,以模拟所有已知疾病,从而导致Clinvar可用的突变。此外,PNB设计人员可用于设计指南RNA来安装或恢复SNV,用一个CBE和七个不同的ABE PAM变体扫描基因组,并返回最佳使用。PNB设计师可以在http://fgcz-shiny .uzh.ch.ch.ch/pnbde signe r/结论上公开访问:结论:使用PNB设计师,我们为CRISPR PE和BE Reagents创建了一种用户友好的设计工具,应该简化选择编辑策略和避免设计并避免设计并进行设计。
这里我们描述了 Acrivon 发现的 ACR-2316,它是一种强效、选择性 WEE1/PKMYT1 抑制剂,临床前研究表明其单药活性优于基准抑制剂。该化合物是使用 AP3 专门设计的,通过平衡抑制 PKMYT1 来克服 WEE1 特异性抑制的局限性,我们的 AP3 平台发现这是 WEE1 抑制剂诱导的主要耐药机制。通过结构引导的药物设计,我们实现了对 WEE1 和 PKMYT1 的精确选择性,确保了主要基于机制的可逆性不良事件。在与基准临床分子的头对头临床前研究中,ACR-2316 与目前的临床 WEE1 或 PKMYT1 抑制剂相比表现出更优异的效力和活性。正在进行的 ACR-2316 单药疗法临床试验的患者给药已经开始,旨在评估 ACR-2316 的安全性和耐受性。