截至 2023 年初,生成式人工智能已成为流行文化和科技行业的热门话题。多个网站允许用户写一个句子并返回一张描绘用户所写内容的图像。有些网站免费提供这项服务,而有些网站则要求用户为这项服务付费。2023 年 1 月 23 日,微软宣布向发明 ChatGPT 和 DALL-E[12][13] 的人工智能研究实验室 OpenAI 投资数十亿美元,这意味着人工智能领域的重要性和潜力。人工智能已经在医疗保健、制造业、零售业和银行业等许多行业得到应用。相对较新的文本到图像生成式人工智能领域(见第 2.1 节)进一步扩展了人工智能的使用领域。我们在本文中研究的一个潜在应用领域是用户体验设计(从现在开始称为 UX)。例如,正在从事 Web 应用程序项目的 UX 设计师或学生可能会发现创建可作为初稿并进一步改进的模拟用户界面很有用。
合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
目标:交付是评估行为干预措施忠诚度的最常见方法之一。但是,缺乏有关干预协议如何反映其提出的理论原理(设计保真)的研究报告。本研究提出了一种用于评估设计保真度的系统方法,并将其应用于针对体育锻炼和抑郁症的基于情感的干预措施。方法:情绪干预包括13个基于网络的模块,该模块是根据基础干预图设计的。具有行为变化专业知识的独立评估者编码了情感内容中的存在或不存在行为变化技术(BCT)。编码结果与干预设计师的先验可靠性规范进行了比较。结果:在讨论之后,独立评估者和干预设计师在与行为激活有关的BCT(AC1 0.91)的存在上具有很高的一致性,并具有“行为的证明”和“监测情绪后果”,具有最低的一致性(AC1 0.4)。与具有最低一致性(AC1 0.4)的“行为演示”和“对情绪后果的监测”(AC1 0.4)的“行为演示”和“监测情绪后果”的存在也有很高的一致性(AC1 0.88)。然后对情绪描述进行了修改,以使互判协议保持一致。结论:本研究提出了一种评估设计保真度的新方法。鼓励行为(和其他多组分)干预措施的开发人员开发和完善这种方法,并评估未来干预措施中的设计保真度,以确保BCT按预期运行。
● Head Office: Canada, founded in 2006 ● Branch Offices: CBS Japan (2006) & CBS Europe (2020) ● Additionally: We provide specialized tools for opto-mechanical simulation (FRED) and optical measurement systems (opsira) to support the full optical development cycle ● Today's Presenter: Tom Davies, COO
基于Li-Garnet Li 7 La 3 Zr 2 O 12(LLZO)电解质的抽象固态锂离子电池近年来已经快速发展。与常规的基于电解质的同行相比,这些固态系统有望满足对安全,不易用和耐温温度的储能电池的迫切需求。在本愿景文章中,我们回顾了当前的研究追求,并讨论了LLZO固态电解质(SSE)用于固态电池的局限性。特别强调了对固态阴极,LLZO SSE和LI金属阳极层制造目前方法论的利弊的讨论。此外,我们讨论了固态阴极中LLZO厚度,阴极面积容量和LLZO含量在Li-Garnet固态电池的能量密度上的贡献,总结了它们所需的值,以匹配常规液体系统的能量密度。最后,我们重点介绍了朝着最终的Li-Garnet固态电池商业化时必须解决的挑战。
摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
这里我们描述了 Acrivon 发现的 ACR-2316,它是一种强效、选择性 WEE1/PKMYT1 抑制剂,临床前研究表明其单药活性优于基准抑制剂。该化合物是使用 AP3 专门设计的,通过平衡抑制 PKMYT1 来克服 WEE1 特异性抑制的局限性,我们的 AP3 平台发现这是 WEE1 抑制剂诱导的主要耐药机制。通过结构引导的药物设计,我们实现了对 WEE1 和 PKMYT1 的精确选择性,确保了主要基于机制的可逆性不良事件。在与基准临床分子的头对头临床前研究中,ACR-2316 与目前的临床 WEE1 或 PKMYT1 抑制剂相比表现出更优异的效力和活性。正在进行的 ACR-2316 单药疗法临床试验的患者给药已经开始,旨在评估 ACR-2316 的安全性和耐受性。
二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
摘要在整个船舶设计过程的早期阶段开发的船舶推进系统的建筑对船舶的整体设计和性能产生了很大的影响。到达最后一艘船舶保护架构的设计空间探索可能是一个相当复杂的过程,用于高性能“组合”的“船舶推进系统”,旨在实现多个,经常相互冲突的设计目标。本文提出了一个基于基于模型的“技术经济和环境风险评估”(TERA)方法的设计空间探索过程的新过程,该方法是使用混合的“多重标准决策制定”(MCDM)程序执行的,以从竞争的推进系统中选择构建设计空间的竞争推进系统中的解决方案。该过程利用了从开发模型的性能模拟产生的性能数据的组合,以及基于比较的专家意见的指标,用于船舶设计过程中无法选择“妥协解决方案”的信息。本文包括一个说明性的示例,说明了拟议过程在设计空间探索的拟议过程中,用于合并的推进系统体系结构。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术