金帅, 1, 2, 6 费红远, 1, 2, 6 朱子旭, 1, 2, 6 罗英锋, 3, 6 刘金星, 1 高胜汉, 3 张锋, 4 陈宇航, 5 王彦鹏, 1, 2,* 和高彩霞 1, 2, 7,* 1 中国科学院遗传与发育生物学研究所、种子设计创新研究院、植物细胞与染色体工程国家重点实验室、基因组编辑中心,北京,中国 2 中国科学院大学现代农业学院,北京,中国 3 中国科学院微生物研究所、微生物资源国家重点实验室,北京,中国 4 明尼苏达大学植物与微生物生物学系、植物精准基因组学中心、微生物与植物基因组学研究所,明尼苏达州明尼阿波利斯55108,美国 5 中国科学院遗传与发育生物学研究所,种子设计创新研究院,分子发育生物学国家重点实验室,北京,中国 6 这些作者贡献相同 7 主要联系人 *通讯地址:yanpengwang@genetics.ac.cn (YW),cxgao@genetics.ac.cn (CG) https://doi.org/10.1016/j.molcel.2020.07.005
Lingjun Shu,Jingxuan Yin,Zhemin Gon,C Gao,Yongxing Liu等。设计了阴离子和阳离子共掺杂的Na3SB(WM)(X)S-4(M = Cl,Br,I)硫化物电解质,具有改善的电导率和稳定的界面质量。道尔顿交易,2023,10.1039/d3dt01151h。hal-04115631
摘要:全球安装的风力涡轮机的累计容量不断增加,证明了人们对风能的兴趣日益浓厚。本文介绍了一种风能转换系统的实验研究,该系统使用一种非常特殊的交流发电机,不同于双馈感应发电机 (DFIG) 或永磁同步发电机 (PMSG)。我们推荐的发电机类似于倒置安装的电励磁同步发电机 (EESG)。它配备了一个多极电感定子,由直流电供电,还有一个环形转子,通过该转子将产生的替代电能分配到公用电网。将相对较低的直流电选择性地注入多极定子,可以在发电机的端子上产生用户所需的电压。这种绕线转子替代发电机 (WRAG) 以同步模式运行。此外,结合转子侧的电力电子接口 (PEI) 转换器,WRAG 可以在低风速范围内将产生的电压调整到公用电网的频率,而无需变速箱。在 3 kVA 机器上进行了实验验证,可以说它是 PMSG 和 DFIG 的中间解决方案,在偏远地区和农业农场具有更高的可靠性。
• 自旋是一个基本量子数 • 铁磁材料包含不成对的电子 • 自旋的排列产生磁性 • 记忆存储在电子自旋中 • 自旋不会像电荷那样“泄漏” • 自旋不受重离子辐照的影响 • 自旋不受累积剂量 (TID) 的影响 • 自旋排列由磁场实现 • 避免基于电荷的设备的磨损机制
图1:热点模拟方法。我们通过将其应用于Musashi-1的RRM1域来证明这种方法。(a)MSI1 / RNA复合物的结构。RNA(棍棒)围绕蛋白质包裹(球形)。将两个相邻的碱基A106和G107(洋红色)埋在蛋白质表面的浅口袋中。(b)通过收集涉及分子间氢键的深埋碱(洋红色)和原子(以黄色显示的供体,绿色供体显示),从复合物中的RNA产生了相互作用图。(c)相互作用图的组成部分聚集在空间中,不参与氢键的原子将其恢复为碳原子。这会产生“热点药理”。 (d)通过与荧光标记的RNA竞争确定的带有单个无碱性位点与原始同源RNA序列的RNA之间结合自由能的差异。正值表明当给定基碱被无碱位点替换时,结合减少,表明A106和G107对这种相互作用的结合亲和力的贡献大于附近的其他碱基。(e)热点药效团是基于配体筛选的模板,寻找可以模仿药效团的三维特征的化合物。屏幕导致化合物R12的鉴定,该复合R12模拟了环的几何形状,并提供了四个所需的氢键组中的三个。(F)R12与荧光素标记的RNA竞争MSI1结合,如通过荧光极化测定所观察到的。这些数据不允许确定结合亲和力。(g)热点药效团回到蛋白质结构上的叠加说明了应由理想配体捕获的相互作用:针对三个芳族侧级堆叠,以及四个分子间氢键。(H)R12在蛋白质结构上的叠加表明,该化合物有望保留芳香族堆积,并概括了四个氢键中的三个。
摘要:随着在线传感技术和高性能计算的最新进展,结构健康监测 (SHM) 已开始成为对民用基础设施进行实时条件监测的自动化方法。理想的 SHM 策略通过利用测量的响应数据来更新基于物理的有限元模型 (FEM) 来检测和描述损坏。在监测复合结构(例如钢筋混凝土 (RC) 桥梁)时,基于 FEM 的 SHM 的可靠性会受到材料、边界、几何和其他模型不确定性的不利影响。土木工程研究人员已经采用了流行的人工智能 (AI) 技术来克服这些限制,因为 AI 具有利用先进的机器学习技术快速分析实验数据来解决复杂和定义不明确的问题的天生能力。在这方面,本研究采用了一种新颖的贝叶斯估计技术来更新耦合的车辆桥梁 FEM 以用于 SHM。与现有的基于 AI 的技术不同,所提出的方法智能地使用嵌入式 FEM 模型,从而减少了参数空间,同时通过基于物理的原理指导贝叶斯模型。为了验证该方法,给定一组“真实”参数,从车桥 FEM 生成桥梁响应数据,并分析参数估计的偏差和标准差。此外,平均参数估计值用于求解 FEM 模型,并将结果与“真实”参数值的结果进行比较。还进行了敏感性研究,以展示正确制定模型空间以改进贝叶斯估计程序的方法。研究最后进行了讨论,重点介绍了利用实验数据使用人工智能技术更新混凝土结构 FEM 时需要考虑的因素。关键词:人工智能、贝叶斯统计、结构健康监测、钢筋混凝土、公路桥梁、车桥相互作用。
ChatGPT(生成式预训练 Transformer)使用人工智能 (AI) 以近乎人类的方式与人类用户建立联系。由于 ChatGPT 专注于通过与历史数据的交互来生成语言,因此它几乎可以毫不费力地响应查询、生成内容,并且正如我们将在本文中看到的那样,甚至可以协助数字营销。ChatGPT 于 2022 年 11 月推出,是 OpenAI 创建的聊天机器人。它通过利用监督和强化学习策略进行了改进(一种迁移学习方法)。它基于 OpenAI GPT-3 系列大型语言模型。2022 年 11 月 30 日,ChatGPT 作为原型推出。它很快就因其在各种主题领域的全面回应和清晰回应而广受欢迎。然而,人们发现一个根本缺陷是其事实正确性不一致。据估计,在推出 ChatGPT 后,OpenAI 在 2023 年的估值为 290 亿美元。
肥厚性心肌病 (HCM) 是一种遗传性肌节疾病,会导致心脏收缩过度。一流的心脏肌球蛋白抑制剂 mavacamten 可改善阻塞性 HCM 的症状。我们在此介绍一种选择性小分子心脏肌球蛋白抑制剂阿菲卡汀,它通过显著减缓磷酸盐释放来降低 ATPase 活性,从而稳定弱肌动蛋白结合状态。阿菲卡汀与肌球蛋白催化域上的变构位点结合,不同于 mavacamten,可防止进入强肌动蛋白结合力产生状态所需的构象变化。通过这样做,阿菲卡汀减少了驱动肌节缩短的功能性肌球蛋白头部的数量。在前动力冲刺状态下与心脏肌球蛋白结合的阿菲卡汀的晶体结构为理解其对平滑肌和快速骨骼肌的选择性提供了基础。此外,在心肌细胞和携带肥大性 R403Q 心肌肌球蛋白突变的小鼠中,阿菲卡汀可降低心脏收缩力。我们的研究结果表明,阿菲卡汀有望成为 HCM 的治疗方法。
根据以下标准进行评估: 技术的总体方法和可用性 用户友好的技术,自动执行大部分步骤 系统设计和模型检查配置 设计需要适应验证,例如,与环境的专用接口、容易进行子类型的数据类型定义、部分支持某些建模功能(C++ 实现) 提出的属性规范和形式化 MSC 属性语言的表达能力不足以在语义上描述复杂的交互属性(例如,以连词开头) 在案例研究中识别明确的建模错误 MSC 语言的表达能力不足以从诊断跟踪中识别建模错误 模型检查器的性能 无法在 1 小时内确定 ERGO 案例研究的 1 个属性的满足情况!
非侵入性神经调节技术,包括经颅直流电刺激 (tDCS),已被证明可以调节神经元功能,并用于认知神经科学和治疗神经精神疾病。在这种情况下,动物模型提供了一种强大的工具来识别 tDCS 的神经生物学作用机制。然而,找到一个易于使用且允许各种刺激参数的电流发生器可能很困难和/或昂贵。在这里,我们介绍了 Open-tES 设备,这是一个在协作平台 Git-Hub 上共享的知识共享许可 (CC BY、SA 4.0) 下的项目。该电流发生器允许实现 tDCS(和其他类型的刺激),适用于啮齿动物,易于使用且成本低廉。已经进行了特性分析以测量所输送电流的精度和准确度。我们还旨在将其效果与临床试验中使用的商业刺激器(DC-Stimulator Plus,Neuro-Conn,德国)进行比较。为了实现这一目标,我们进行了一项行为研究,以评估其在减少小鼠抑郁相关行为方面的功效。刺激器的精度和准确度分别优于 250 nA 和 25 nA。本研究对小鼠进行的行为评估未发现临床试验中使用的商业刺激器和 Open-tES 设备之间存在任何显著差异。刺激器的准确度和精确度确保了刺激的高可重复性。该电流发生器是一种可靠且廉价的工具,可用于非侵入性脑电刺激领域的临床前研究。