1 圣地亚哥德孔波斯特拉大学粒子物理系,15782-圣地亚哥德孔波斯特拉,西班牙 2 卫生研究所分子成像组,15706-圣地亚哥德孔波斯特拉,西班牙 3 巴黎萨克雷大学物理实验室(IJCLab-UMR9012),奥赛,91405 法国 4 国立加速器中心,41092 塞维利亚,西班牙 5 塞维利亚大学原子、分子和核物理系,41012 塞维利亚,西班牙-赫尔曼-赫尔曼-赫尔曼 1,76344 Eggenstein-Leopoldshafen,德国。目前在德国电子同步加速器 DESY,Notkestrasse 85,22607 汉堡,德国 7 医学物理和生物数学组,西班牙圣地亚哥德孔波斯特拉卫生研究所,15706。 8 巴塞罗那微电子研究所,国家微电子中心 (IMB-CNM, CSIC),贝拉特拉 08193 西班牙
在本文中,我们提出了一种称为自旋扭矩二极管(STD)的纳米级旋转射频(RF)检测器的电气模型。提出了一种用于模型参数提取的完整方法。得出了与STD的等效电路,并将设备电阻非线性的建模与自旋扭转二极管效应一起。提出了一种详细的逐步方法,以使用常规的直流测量,RF散射参数(S-Parameter),连续波和功率表征提取模型参数。参数提取后,与单个STD的测量结果进行了比较,成功验证了模型。最后,提出的STD电气模型用于预测基于2-STD的RF检测器体系结构的行为。仿真结果突出了提出的建模方法的兴趣,以研究合适的RF检测器体系结构,以提高单个或多体RF检测的RF-DC转换效率。
祭坛,I。Buckanan,R。Bunker,B。Calkins,R。Calkins,R。Cameron,C。Carthreat,D。G。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J. K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。 街,H。Sun。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J.K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。街,H。Sun。街,H。Sun。Young,T。C. Yu,B。Zatschler,S。Zatschler,A。Zaytsev,E。Zhang,L。Zheng,A。Zuniga和M. J. Zurowski
• 高宽带检测效率(接近 1,许多 𝝀) • 超高时间精度(数十皮秒) • 超低暗计数率(< 1 cps) • 超高检测率(> 1 Gcps) • 出色的 PNR 性能
1不列颠哥伦比亚大学的物理与天文学系,不列颠哥伦比亚大学,不列颠哥伦比亚省V6T 1Z1,加拿大2 Triumf,不列颠哥伦比亚省V6T 2A3,加拿大3,加拿大3物理系,多伦多大学,多伦多大学,多伦多大学,多伦多,安大略省M5S 1A77,加拿大4 Deparivefiísicadefísicicicatehoma,deririririric,pecansica tehoma,deririririricriririric,Iddad nord de.马德里,西班牙5个InstitutodefísicaTeóricaUam-CSIC,校园,坎多布兰科校园,28049,马德里,西班牙6号,6迪勒姆大学,达勒姆大学,达勒姆大学,达勒姆DH1 3LE,英国7 SLAC国家加速器实验室 /卡夫利粒子粒子和自然公园,北科学杂志, 360 Huntington Avenue,马萨诸塞州波士顿,美国92115,美国9太平洋西北国家实验室,华盛顿州里奇兰市,华盛顿99352,美国10物理学和天文学系,以及米切尔基本物理和天文学研究所美国科罗拉多州丹佛大学物理学,美国13美国13,美国斯坦福大学,加利福尼亚州斯坦福大学物理系94305,美国14号南部卫理公会大学,德克萨斯州达拉斯75275,美国15美国加利福尼亚大学,加利福尼亚州伯克利大学教育学院。 JATNI 752050,印度17号物理与天文学系西北大学,伊利诺伊州埃文斯顿,伊利诺伊州60208-3112,美国18号,南达科他州矿业与技术学院,南达科他州拉皮德城57701,美国19号9,1039区域道24号,萨德伯里,安大略省P3Y 1N2,加拿大20物理学和天文学学院,明尼苏达州明尼苏达州明尼苏达州55455,美国21 d。 Karlsruhe技术研究所(KIT),76344德国Eggenstein-Leopoldshafen,德国23Institutfür实验性菲西克,汉堡大学,22761汉堡,德国,德国24年汉堡,24物理学系 19282, United Arab Emirates 26 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA 27 Laurentian University, Department of Physics, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada 28 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 29 Department of Electrical Engineering, University of科罗拉多州丹佛,丹佛,科罗拉多州80217,美国30,南达科他大学,南达科他大学,南达科他州57069,美国31劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国32,美国32,美国圣克拉拉大学,加利福尼亚州圣克拉拉,
量子纳米结构的开发对于在长波长红外(LWIR)窗口中的光电探测器技术的发展至关重要,尤其是成功实施量子点(QDS)具有可能导致该领域的世代相传的潜力[1]。尽管有承诺,但与最先进的技术相比,基于QD的光电探测器的性能仍然缺乏。我们提出了一种创新的解决方案,可以通过利用量子点局部状态到连续体中的谐振状态的吸收来超过当前的基于QD的检测器,即半导体导带中的状态具有增强的量子点区域的概率密度[2]。这种方法利用了此类状态的独特特性,可以大大增强载体提取,从而克服了基于量子点的红外探测器的最关键缺点之一。
★发光:吸收能量后光子的发射(可见光,UV,X射线)。Energy deposition in the material by ★ Light ➔ Photoluminescence ★ Heat ➔ Thermoluminescence ★ Sound ➔ Sonoluminescence ★ Electric energy ➔ Electrolumineszence ★ Mechanical deformation ➔ Triboluminescence ★ Chemical reactions ➔ Chemoluminescence ★ Living organism ➔ Bioluminescence ★ Scintillation: Emission of photons following the excitation of atoms and molecules by radiation ( γ或粒子辐射)。★荧光:通过吸收光或其他电磁辐射的物质发射光的物质。在大多数情况下,发射光的波长更长。排放之后不久(Ass.10 ns)。★磷光:与荧光相似,但是重新排放不是立即的。能量水平和光子发射之间的过渡延迟(MS最多小时)。
•探测器通常观察到闪烁光,电离,振动•仅在某些能量阈值之上可用的闪烁和电离•在弹性核后坐力,闪烁和电离中,闪烁和离子化是由于后退核与邻近的核之间碰撞而导致的,而在MIGDAL中,后退的原子ATOM ATOM ATOM ATOM ATMED/IRISID/IRISINED本身。这对于较小的能量是可能的
准确校准高纯晶也(HPGE)检测器对于在各种科学和工业应用中精确测量γ辐射至关重要。在本文中,对HPGE探测器的校准进行了研究,从能量,分辨率和效率方面进行了研究。校准源(例如Europium-152和133)用于建立能力和分辨率校准,结果显示出高线性和令人满意的分辨率性能。效率校准最初覆盖了1.4 meV的能量,通过包括及时的γ射线测量值扩展到7.65 MeV。使用六阶多项式方程对效率数据进行建模,这与观察到的值很好地一致。这项研究证实,提示γ测量值可以有效地将HPGE检测器的校准范围扩展到更高的能量。但是,它还强调了需要改进的实验设置和更长的测量时间,以进一步提高高能量效率校准的准确性和可靠性。结果为准确的γ射线测量提供了坚实的基础。
