在过渡金属氧化金属异质结构的界面处的相关性和电子重建的摘要为调整其独特的物理特性提供了新的途径。在这里,我们研究了界面非色化和垂直相分离对磁性特性的影响,以及外部上马la 0.7 SR 0.7 SR 0.3 MNO 3(LSMO)/SRTIO 3(001)氧化物氧化物异构结构的接近性诱导的磁性。我们还重新分辨了该系统报告的最近观察到的逆滞后行为,我们发现,这些行为是从超导螺线管的remanent fird中提出的,而不是从低稳态的LSMO lsmo thin-films中的抗铁磁内交换偶联。结合了原子解析的电子能损失光谱,元素特异性X射线磁性圆形二色性和界面敏感的极化X射线谐振磁磁反射性显示Mn 3 + - 增强的互化lsmo层的形成。 MNO 3,以及界面处的少量O-VACACANCES。这些结果不仅可以提高对相关氧化物界面的磁性和自旋结构的理解,而且还对实际应用有望,尤其是在性能依赖于界面自旋结构控制和旋转极化电流的设备。
摘要由于其高生产成本高的特异性刚度和强度,短纤维增强塑料(SFRP)取代了越来越常见的材料,例如技术设备中的钢或铝。即使SFRP在宏观水平上均匀地作为材料起作用,由于纤维形态(方向,长度和体积含量),在微观水平上形成各向异性。结果,由SFRP制成的组件在焊接线处具有较低的强度和刚度,或者厚度的差异可能导致组件故障。因此,SFRP中纤维形态的知识对于组件设计至关重要。确定纤维形态的一种方法是计算机断层扫描(CT)。由于几微米(〜7-20 µm)的纤维直径较小,因此由于必要的高放大倍率,层析成像的视野降低了。因此,标准CT系统只能用于检查具有较大体积的组件的成分和纤维形态的代表性,破坏性的样品,不能非破坏性地分析。在这项工作中,研究了一种方法,其中将少量衰减的示踪剂纤维添加到塑料中的增强纤维中,从而增加了对比度与噪声比率。这允许减少几何放大倍率,并可以实现更大的视野。
系统神经科学通常依赖于使用植入的装置和病毒注射来刺激和记录解剖学或遗传定义的神经元种群。要正确解释所得数据,至关重要的是映射植入设备或注射的位置,以及在常见的解剖坐标系统中由多个动物产生的池。显微镜和组织清除方面的最新发展允许对完整啮齿动物大脑的全自动,高分辨率成像1。存在许多将这些3D全脑显微镜数据集注册到地图集的方法,但是这些方法通常不灵活,耗时,需要相当大的计算技能2。另外,一旦注册,就没有开源的,用户友好的工具来分割和分析这些图像中任何类型的结构。在这里,我们已经开发了脑部和脑部段,这是两个用户友好的工具,可在几分钟内用于注册和细分全脑显微镜数据集。
Zemheri Shaman 1,* Sevil Yeniocak 2,İremDemir 3,Ergun Kaya 4,NurdanSaraç51MuğlaSıtkıKoçman大学,科学,分子生物学和遗传学系,48000 zemherisaman@outlook.com-com-0000-0003-0165-7824 2MuğlaSıtkıKoçman大学,科学学院,分子生物学和遗传学出发,48000,Menteşe,Muğla,Muğla Koçman大学,科学学院,生物学,Menteşe,Muğla,土耳其Iremdemir@posta.mu.edu.edu.tr-0000-0000-0001-5699-0582 4MuğlaSıtkılaKoçman大学ergunkaya@mu.edu.tr-0000-0000-0003-4255-3802 5MuğlaSıtkıKoçman大学,科学系,生物学系,Mugla,Mugla,Türkiyensarac@mu.edu.edu.edu.tr-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-766--542XZemheri Shaman 1,* Sevil Yeniocak 2,İremDemir 3,Ergun Kaya 4,NurdanSaraç51MuğlaSıtkıKoçman大学,科学,分子生物学和遗传学系,48000 zemherisaman@outlook.com-com-0000-0003-0165-7824 2MuğlaSıtkıKoçman大学,科学学院,分子生物学和遗传学出发,48000,Menteşe,Muğla,Muğla Koçman大学,科学学院,生物学,Menteşe,Muğla,土耳其Iremdemir@posta.mu.edu.edu.tr-0000-0000-0001-5699-0582 4MuğlaSıtkılaKoçman大学ergunkaya@mu.edu.tr-0000-0000-0003-4255-3802 5MuğlaSıtkıKoçman大学,科学系,生物学系,Mugla,Mugla,Türkiyensarac@mu.edu.edu.edu.tr-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-766--542X
摘要。使用定向能量沉积 (DED) 工艺(例如电弧增材制造 (WAAM))制造零件时,需要确定沉积路径和操作参数(送丝速度、焊枪速度、能量)。虽然操作参数会影响制造的焊珠的几何形状,但沉积轨迹会影响这些焊珠排列以填充目标形状的方式。焊珠几何形状对热条件(难以准确管理)的强烈依赖性使得选择适当的参数变得复杂。可以通过多种方式解决该问题,本文提出了一种根据零件的当前状态(模拟或测量)和制造或几何约束确定轨迹和操作参数的方法。提出的方法分为两个阶段:
摘要。已使用“零交叉”测量方法在混合物中同时定量奎宁 - 腺嘌呤或奎宁 - 甲基丙二酰胺盐酸盐的同时定量。在有4.3 µg/ml腺嘌呤的存在下,奎宁和腺嘌呤的第一衍生光谱允许在9.0 µg/ml quinine的情况下测定奎宁(1.5–17.9 µg/ml)。在二元二元 - 氯丙胺盐酸盐的二元混合物中,喹氨酸和甲基丙二酰胺盐酸盐的第一个衍生光谱允许在5.4 µG/ml甲基甲基盐水中测定奎宁(11.95–95.62 µg/ml),并在5.4 µg/ml的米尔酯中测定(1.34–21.52 µg/ml),存在29.88 µg/ml的奎宁。对所提供的实际数据进行了统计审查,以对推荐方法进行批判性评估。关键词:奎宁,腺嘌呤,甲氧氯普胺盐酸盐,二元混合物,同时测定,衍生分光光度法
结果:单倍型包括Y染色体(Dalachr6a),该染色体表现出早期的异态,其特征在于与X染色体相比略有尺寸减小和丝粒转移。比较基因组分析显示,二下的性染色体更新。性别确定区域(SDR)被完善至〜7.6 MB,占性染色体的约44%。该区域对应于富含男性特异性变异和性别特异性基因的上心反转。在SDR中注释的455个基因中,有88个被确定为具有性偏见表达的性别联系的候选者,许多人参与花器官的发育。值得注意的是,Y编码的COI1基因被确定为茉莉酸(JA)信号的潜在调节剂。雄花表现出JA-IE浓度是雌花的三倍,基因表达分析涉及性表型测定中的JA生物合成和信号传导途径。
单个粒子冷冻EM可以通过将嵌入在纳米厚的玻璃体冰中的几百万个纯化的蛋白质颗粒可视化到几百万纯化的蛋白质颗粒,从而重建蛋白质的接近原子或什至原子分辨率3D蛋白质。这对应于纯化蛋白质的皮克图,这些蛋白质可以从几千个细胞中分离出来。因此,Cryo-Em具有最敏感的分析方法之一,该方法提供了高分辨率蛋白质结构作为读数。实际上,准备低温EM网格需要超过一百万倍的起始生物材料。为了缩小差距,我们开发了一种微分离(MISO)方法,该方法将基于微流体的蛋白质纯化与冷冻EM网格制剂相结合。我们验证了可溶性细菌和真核膜蛋白的方法。我们表明,Miso可以从一个微克的靶蛋白微克开始,并在几个小时内从细胞到冷冻EM网格。这将纯化缩短了几百到几千倍,并为迄今无法访问的蛋白质的结构表征打开了可能性。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月8日。 https://doi.org/10.1101/2024.01.21.576499 doi:Biorxiv Preprint